【題目】直三棱柱ABC﹣A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1= ,M是CC1的中點(diǎn),則異面直線(xiàn)AB1與A1M所成角為

【答案】
【解析】解:連接AC1
∵∠ACB=90°,∠BAC=30°,BC=1,AA1= ,
∴A1C1= BC= ,
Rt△A1C1M中,tan∠A1MC1= ;
Rt△AA1C1中,tan∠AC1A1=
∴tan∠MA1C1=tan∠AC1A1 即∠AC1A1=∠A1MC1
可得矩形AA1C1C中,A1M⊥AC1
∵B1C1⊥A1C1 , B1C1⊥CC1且AC1∩CC1=C1
∴B1C1⊥平面AA1C1 ,
∵A1M面AA1C1 , ∴B1C1⊥A1M,
又AC1∩B1C1=C1 , ∴A1M⊥平面AB1C1
結(jié)合AB1平面AB1C1 , 得到AB1⊥A1M,
即異面直線(xiàn)AB1與A1M所成的角是
所以答案是:

【考點(diǎn)精析】關(guān)于本題考查的異面直線(xiàn)及其所成的角,需要了解異面直線(xiàn)所成角的求法:1、平移法:在異面直線(xiàn)中的一條直線(xiàn)中選擇一特殊點(diǎn),作另一條的平行線(xiàn);2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線(xiàn)間的關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)市場(chǎng)調(diào)查,某種商品一年內(nèi)每件出廠(chǎng)價(jià)在7千元的基礎(chǔ)上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波動(dòng)(x為月份),已知3月份達(dá)到最高價(jià)9千元,7月份價(jià)格最低為5千元,根據(jù)以上條件可確定f(x)的解析式為

A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N

B. f(x)=9sin(x-) (1≤x≤12,x∈N

C. f(x)=2sinx+7 (1≤x≤12,x∈N

D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)a,b∈R,記max{a,b}= ,則函數(shù)f(x)=max{|x+1|,x+2}(x∈R)的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí), 若對(duì)任意的,總存在使成立, 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù))與的圖象上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+4[sin(θ+ )]x﹣2,θ∈[0,2π]].
(1)若函數(shù)f(x)為偶函數(shù),求tanθ的值;
(2)若f(x)在[﹣ ,1]上是單調(diào)函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]任取的一個(gè)數(shù),b是從區(qū)間[0,2]任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:函數(shù) 在(﹣∞,+∞)上有極值,命題q:雙曲線(xiàn) 的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案