為了加快經(jīng)濟的發(fā)展,某省選擇兩城市作為龍頭帶動周邊城市的發(fā)展,決定在兩城市的周邊修建城際輕軌,假設(shè)為一個單位距離,兩城市相距個單位距離,設(shè)城際輕軌所在的曲線為,使輕軌上的點到兩城市的距離之和為個單位距離,

(1)建立如圖的直角坐標系,求城際輕軌所在曲線的方程;
(2)若要在曲線上建一個加油站與一個收費站,使三點在一條直線上,并且個單位距離,求之間的距離有多少個單位距離?
(3)在兩城市之間有一條與所在直線成的筆直公路,直線與曲線交于兩點,求四邊形的面積的最大值.
(1)(2)8(3)
(1)根據(jù)題目條件選取適當?shù)淖鴺讼,本小題應(yīng)該以AB所在直線為x軸,AB的垂直平分線為y軸建立直角坐標系,這樣得到的軌跡方程是標準方程,有利于下一步的計算.
(2)由橢圓的定義可知|AM|+|AN|+|BM|+|BN|=20,|AM|+|AN|=12,所以|MN|=8.
(3)先求出四邊形的面積的表達式,設(shè)直線方程為y=x+t,然后與橢圓方程聯(lián)立,消x后得到關(guān)于y的一元二次方程,借助韋達定理,根據(jù),
求出面積關(guān)于t的函數(shù)表達式,利用函數(shù)的方法求最值即可.
解:(1)以AB為x軸,以AB中點為原點O建立直角坐標系,設(shè)曲線E上點
∵|PA|+|PB|=10>|AB|=8
∴動點軌跡為橢圓,且a=5,c=4,從面b=3.
∴曲線E的方程為                                                     4分
(2)由|AM|+|AN|+|BM|+|BN|=20,|AM|+|AN|=12,所以|MN|=8                         8分
(3)將代入,得
設(shè)


所以當t=0時,面積最大是,此時直線為l:y=x  13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點,是平面上一動點,且滿足,
(1)求點的軌跡對應(yīng)的方程;
(2)已知點在曲線上,過點作曲線的兩條弦,且的斜率為滿足,試判斷動直線是否過定點,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,中,,且是函數(shù)的一個極值點.
(1)求數(shù)列的通項公式;
(2)若點的坐標為(1,)(,過函數(shù)圖像上的點 的切線始終與平行(O 為原點),求證:當 時,不等式對任意都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線與直線()的公共點的個數(shù)為(    ).
A.0B.1 C.0或1D.0或1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC一邊的兩個頂點為B(3,0),C(3,0)另兩邊所在直線的斜率之積為 為常數(shù)),則頂點A的軌跡不可能落在下列哪一種曲線上(   )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知中,,一個圓心為M,半徑為的圓在內(nèi),沿著的邊滾動一周回到原位。在滾動過程中,圓M至少與的一邊相切,則點M到頂點的最短距離是             ,點M的運動軌跡的周長是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線(為參數(shù))與圓為參數(shù))相切,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以平面直角坐標系的坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線E的極坐標方程為,曲線F的參數(shù)方程為(t為參數(shù))
(1) 求曲線E的直角坐標方程及曲線F的普通方程;
(2)判斷兩直線的位置關(guān)系,若相交,求弦長,若不相交,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

頂點在原點,焦點為的拋物線的標準方程為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案