【題目】已知橢圓的左、右焦點分別為,上頂點為,離心率為,且

(Ⅰ)求橢圓的標準方程;

(Ⅱ)已知為坐標原點,過點的直線與橢圓交于,兩點,點在橢圓上,若,試判斷是否為定值?若是,求出該定值;若不是,請說明理由.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

)先利用離心率得出再根據(jù)得出,由,向量數(shù)量積坐標化即可;

2)直線斜率不存在和斜率為0時得出定值,斜率存在時設出直線方程,代入橢圓方程,利用弦長公式求出再利用垂直得出點P坐標,以此求出的數(shù)值.最后求得和為定值.

(Ⅱ)設,

因為橢圓的離心率為,所以,即,因為,所以

因為,所以,

,所以,即,解得(負值舍去),

所以,,故橢圓的標準方程為

(Ⅱ)當直線的斜率不存在時,,,

此時

當直線的斜率為時,,,此時;

當直線的斜率存在且不為時,

設直線的方程為,,

代入,消去可得

,

所以,

因為,所以直線的方程為,

,因為點在橢圓上,所以由可得,

所以,

所以

綜上,為定值,該定值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且 , 成等比數(shù)列.

(1)求數(shù)列的通項公式

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意, , 成等比數(shù)列得求出d即可得通項公式;(2)求項的絕對前n項和,首先分清數(shù)列有多少項正數(shù)項和負數(shù)項,然后正數(shù)項絕對值數(shù)值不變,負數(shù)項絕對值要變號,從而得,得,由,得,∴ 計算 即可得出結(jié)論

解析:(1)由題意可得,則, ,

,即,

化簡得,解得(舍去).

.

(2)由(1)得時,

,得,由,得,

.

.

點睛:對于數(shù)列第一問首先要熟悉等差和等比通項公式及其性質(zhì)即可輕松解決,對于第二問前n項的絕對值的和問題,首先要找到數(shù)列由多少正數(shù)項和負數(shù)項,進而找到絕對值所影響的項,然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業(yè)生擬到兩家公司中的一家應聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺延遲退休年齡政策為了了解人們對延遲退休年齡政策的態(tài)度,責成人社部進行調(diào)研.人社部從網(wǎng)上年齡在15-65歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計結(jié)果如下:

年齡

支持延遲退休的人數(shù)

15

5

15

28

17

1)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過005的前提下認為以45歲為分界點的不同人群對延遲退休年齡政策的支持度有差異;

45歲以下

45歲以上

總計

支持

不支持

總計

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

2)若以45歲為分界點,從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項活動、現(xiàn)從這8人中隨機抽2人.記抽到45歲以上的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知圓C的圓心,半徑r=3.

1)求圓C的極坐標方程;

2)若Q點在圓C上運動,POQ的延長線上,且,求動點P的軌跡的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若),,,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的直角坐標方程與直線的普通方程;

(2)直線與曲線交于兩點,記弦的中點為,點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校實行自主招生,參加自主招生的學生從8個試題中隨機挑選出4個進行作答,至少答對3個才能通過初試,已知甲、乙兩人參加初試,在這8個試題中甲能答對6個,乙能答對每個試題的概率為,且甲、乙兩人是否答對每個試題互不影響.

1)試通過概率計算,分析甲、乙兩人誰通過自主招生初試的可能性更大;

2)若答對一題得5分,答錯或不答得0分,記乙答題的得分為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=aex2x+1

1)當a1時,求函數(shù)fx)的極值;

2)若fx)>0xR成立,求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是否存在12個集合,,和4098個集合滿足下列三個條件:(1);(2)當時,;(3)當時,

查看答案和解析>>

同步練習冊答案