已知直線與橢圓相交于A、B兩點(diǎn).。
(1)若橢圓的離心率為,焦距為2,求線段AB的長(zhǎng);
(2)若向量與向量互相垂直(其中O為坐標(biāo)原點(diǎn)),當(dāng)橢圓的離心率e=2時(shí),求橢圓的長(zhǎng)軸的長(zhǎng).
(1)AB的長(zhǎng) (2)橢圓的長(zhǎng)軸的長(zhǎng)
(1)  
∴橢圓的方程為 
聯(lián)立消去y得: 設(shè)


 
(2)設(shè)
  

消去y 
  整理得 


 得:

整理得: 

代入上式得   
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓+=1上一點(diǎn)P到兩焦點(diǎn)距離之積為m,則m最大時(shí)求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A(0,-1)、B(0,1)兩點(diǎn),△ABC的周長(zhǎng)為6,則△ABC的頂點(diǎn)C的軌跡方程是(    )
A.+ =1(x≠±2)B.+=1(y≠±2)
C.+=1(x≠0)D.+=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)焦點(diǎn)為F,M是橢圓上的任意點(diǎn),|MF|的最大值和最小值的幾何平均數(shù)為2,橢圓上存在著以y=x為軸的對(duì)稱點(diǎn)M1M2,且|M1M2|=,試求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)及橢圓,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





(1)求橢圓的方程;
(2)設(shè)直線l與橢圓交于A,B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線l的距離為,求△AOB面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

根據(jù)指令,機(jī)器人在平面上能完成下列動(dòng)作:先從原點(diǎn)O沿正東偏北)方向行走一段時(shí)間后,再向正北方向行走一段時(shí)間,但何時(shí)改變方向不定。假定機(jī)器人行走速度為10米/分鐘,則機(jī)器人行走2分鐘時(shí)的可能落點(diǎn)區(qū)域的面積是          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F1、F2是雙曲線x2y2=4的左、右兩個(gè)焦點(diǎn),P是雙曲線上任意一點(diǎn),過F1作∠F1PF2的平分線的垂線,垂足為M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中心在原點(diǎn),焦點(diǎn)在x軸上,若長(zhǎng)軸長(zhǎng)為18,且兩個(gè)焦點(diǎn)恰好將長(zhǎng)軸三等分,則此橢圓的方程是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案