已知等比數(shù)列滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和公式.

(Ⅰ). (Ⅱ),.

解析試題分析:(Ⅰ)為求數(shù)列的通項(xiàng)公式,關(guān)鍵是求等比數(shù)列的公比為,
根據(jù)已知條件,建立的方程即可得到.
(Ⅱ)首先由(Ⅰ)得到的通項(xiàng)公式,直接運(yùn)用等比數(shù)列求和公式可得.
該題突出對(duì)基礎(chǔ)知識(shí)的考查,較為容易.
試題解析:(Ⅰ)設(shè)等比數(shù)列的公比為,
①                               2分
②                 4分
兩式作比可得,所以,                           5分
代入②解得,                 6分
所以.                                               7分
(Ⅱ)由(Ⅰ)可得                              8分
易得數(shù)列是公比為4的等比數(shù)列,
由等比數(shù)列求和公式可得
.               13分
考點(diǎn):等比數(shù)列的通項(xiàng)公式、求和公式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前n項(xiàng)和記為,,點(diǎn)在直線上,n∈N*.
(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),,數(shù)列滿足:,.
(Ⅰ)求證數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(Ⅱ)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,
(1)求;
(2)設(shè),證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

各項(xiàng)均為正數(shù)的等比數(shù)列中,
(1)求數(shù)列通項(xiàng)公式;
(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足:記數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點(diǎn)在函數(shù)的圖像上,(其中
(Ⅰ)求證數(shù)列是等比數(shù)列;
(Ⅱ)設(shè),求及數(shù)列的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
(Ⅲ)若,,求不超過的最大的整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知等比數(shù)列{}的公比為q,前n項(xiàng)和為Sn,且S1,S3,S2成等差數(shù)列.
(I)求公比q;
(II)若,問數(shù)列{Tn}是否存在最大項(xiàng)?若存在,求出該項(xiàng)的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案