數(shù)列的前項(xiàng)和為,
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
(Ⅲ)若,,求不超過的最大的整數(shù)值.

(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)。

解析試題分析:(Ⅰ)利用遞推式相減后,構(gòu)造等比數(shù)列進(jìn)行證明;(Ⅱ)利用錯(cuò)位相減法求解;(Ⅲ)借助第一問的結(jié)論,確定數(shù)列的通項(xiàng)公式,進(jìn)而采用裂項(xiàng)相消法求解P,進(jìn)而利用放縮求不超過的最大的整數(shù)值.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/98/0/1ifp52.png" style="vertical-align:middle;" />,
所以 ① 當(dāng)時(shí),,則,            1分
② 當(dāng)時(shí),,        2分
所以,即
所以,而,        3分
所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以.     4分
(Ⅱ)由(Ⅰ)得
所以 ①
,     6分
②-①得:,     7分
.      9分
(Ⅲ)由(1)知        10分
,   12分
所以
,
故不超過的最大整數(shù)為.                 13分
考點(diǎn):1.等比數(shù)列的證明;2.數(shù)列求和。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,,若函數(shù),在點(diǎn)處切線過點(diǎn)
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列滿足.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等比數(shù)列{}的前項(xiàng)和為,已知對(duì)任意的,點(diǎn),均在函數(shù)的圖像上.
(Ⅰ)求的值;
(Ⅱ)記求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn.求滿足不等式>2 010的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是函數(shù)的圖象上一點(diǎn),數(shù)列的前n項(xiàng)和.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)將數(shù)列前2013項(xiàng)中的第3項(xiàng),第6項(xiàng), ,第3k項(xiàng)刪去,求數(shù)列前2013項(xiàng)中剩余項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列的前三項(xiàng)和為18,是一個(gè)與無關(guān)的常數(shù),若恰為等比數(shù)列的前三項(xiàng),
(1)求的通項(xiàng)公式.
(2)記數(shù)列,的前三項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列、滿足:.
(1)求;
(2) 證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)設(shè),求實(shí)數(shù)為何值時(shí)恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是等比數(shù)列的前項(xiàng)和, 公比,已知1是的等 差中項(xiàng),6是的等比中項(xiàng),
(1)求此數(shù)列的通項(xiàng)公式 
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案