(本小題共l4分)
已知函數(shù),.
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)-x2[h(x)]2,求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:.
解:(Ⅰ),
.
令,得(舍去).
當(dāng)時.;當(dāng)時,,
故當(dāng)時,為增函數(shù);當(dāng)時,為減函數(shù).
為的極大值點,且.
(Ⅱ)方法一:原方程可化為,
即為,且
①當(dāng)時,,則,即,
,此時,∵,
此時方程僅有一解.
②當(dāng)時,,由,得,,
若,則,方程有兩解;
若時,則,方程有一解;
若或,原方程無解.
方法二:原方程可化為,
即,
①當(dāng)時,原方程有一解;
②當(dāng)時,原方程有二解;
③當(dāng)時,原方程有一解;
④當(dāng)或時,原方程無解.
(Ⅲ)由已知得,
.
設(shè)數(shù)列的前n項和為,且()
從而有,當(dāng)時,.
又
.
即對任意時,有,又因為,所以.
則,故原不等式成立.
解析
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共l4分)
已知函數(shù)
(I)設(shè)函數(shù),求的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于的方程
(Ⅲ)試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題
(本小題共l4分)
已知函數(shù)
(I)設(shè)函數(shù),求的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于的方程
(Ⅲ)試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共l4分)
已知函數(shù),.
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)-x2[h(x)]2,求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)文(四川卷)解析版 題型:解答題
(本小題共l4分)
已知函數(shù),.
(Ⅰ)設(shè)函數(shù)F(x)=18f(x)-x2[h(x)]2,求F(x)的單調(diào)區(qū)間與極值;
(Ⅱ)設(shè),解關(guān)于x的方程;
(Ⅲ)設(shè),證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com