【題目】已知橢圓:()的左、右焦點分別為和,右頂點為,且,短軸長為.
(1)求橢圓的方程;
(2)若過點作垂直軸的直線,點為直線上縱坐標不為零的任意一點,過作的垂線交橢圓于點和,當時,求此時四邊形的面積.
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線C:()的焦點為F,經(jīng)過點F的動直線l交拋物線C于,兩點,且.
(1)求拋物線C的方程;
(2)若(O為坐標原點),且點E在拋物線C上,求直線l的傾斜角;
(3)若點M是拋物線C的準線上的一點,直線,,斜率分別為,,,求證:當為定值時,也為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3于M),在堤岸線l3上的E,F兩處建造建筑物,其中E,F到M的距離為1(百米),且F恰在B的正對岸(即BF⊥l3).
(1)在圖②中建立適當?shù)钠矫嬷苯亲鴺讼,并求棧?/span>AB的方程;
(2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(∠EPF)最大?請在(1)的坐標系中,寫出觀測點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.
(1)求的方程;
(2)直線交于,兩點,且.已知上存在點,使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于兩點,延長交橢圓于點,的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,等腰梯形中,,是的中點.將沿折起后如圖2,使二面角成直二面角,設是的中點,是棱的中
點.
(1)求證:;
(2)求證:平面平面;
(3)判斷能否垂直于平面,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)試求函數(shù)零點的個數(shù),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計了10月1日7:00﹣23:00這一時間段內(nèi)顧客購買商品人次,統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)顧客購買商品共5000人次顧客購買商品時刻的的頻率分布直方圖如下圖所示,其中時間段7:0011:00,11:0015:00,15:00~19:00,19:00~23:00,依次記作[7,11),[11,15),[15,19),[19,23].
(1)求該天顧客購買商品時刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)由頻率分布直方圖可以近似認為國慶節(jié)假期期間該商場顧客購買商品時刻服從正態(tài)分布N(μ,δ2),其中μ近似為,δ=3.6,估計2019年國慶節(jié)假期期間(10月1日﹣10月7日)該商場顧客在12:12﹣19:24之間購買商品的總?cè)舜危ńY(jié)果保留整數(shù));
(3)為活躍節(jié)日氣氛,該商場根據(jù)題中的4個時間段分組,采用分層抽樣的方法從這5000個樣本中隨機抽取10個樣本(假設這10個樣本為10個不同顧客)作為幸運客戶,再從這10個幸運客戶中隨機抽取4人每人獎勵500元購物券,其他幸運客戶每人獎勵200元購物券,記獲得500元購物券的4人中在15:00﹣19:00之間購買商品的人數(shù)為X,求X的分布列與數(shù)學期望;
參考數(shù)據(jù):若T~N(μ,σ2),則①P(μ﹣σ<T≤μ+σ)=0.6827;②P(μ﹣2σ<T≤μ+2σ)=0.9545;③P(μ﹣3σ<T≤μ+3σ)=0.9973.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com