已知拋物線的準線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.

(1)y2=4x;(2)點N坐標為.

解析試題分析:本題主要考查拋物線的標準方程及其幾何性質(zhì)、圓的標準方程及其幾何性質(zhì)、圓的切線的性質(zhì)等基礎(chǔ)知識,考查學生分析問題解決問題的能力和計算能力.第一問,利用拋物線的準線,得到M點的坐標,利用圓的方程得到圓心C的坐標,在中,可求出,在中,利用相似三角形進行角的轉(zhuǎn)換,得到的長,而,從而解出P的值,即得到拋物線的標準方程;第二問,設出N點的坐標,利用N、C點坐標寫出圓C的方程,利用點C的坐標寫出圓C的方程,兩方程聯(lián)立,由于P、Q是兩圓的公共點,所以聯(lián)立得到的方程即為直線PQ的方程,而O點在直線上,代入點O的坐標,即可得到s、t的值,即得到N點坐標.
試題解析:(1)由已知得,C(2,0).
ABx軸交于點R,由圓的對稱性可知,
于是
所以,即,p=2.
故拋物線E的方程為y2=4x.          5分
 
(2)設N(st).
P,QNC為直徑的圓D與圓C的兩交點.
D方程為,
x2y2-(s+2)xty+2s=0.       ①
又圓C方程為x2y2-4x+3=0.       ②
②-①得(s-2)xty+3-2s=0.       ③  9分
PQ兩點坐標是方程①和②的解,也是方程③的解,從而③為直線PQ的方程.
因為直線PQ經(jīng)過點O,所以3-2s=0,
故點N坐標為.       12分
考點:拋物線的標準方程及其幾何性質(zhì)、圓的標準方程及其幾何性質(zhì)、圓的切線的性質(zhì).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓交于兩點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設點).
(1)指出,并求的關(guān)系式();
(2)求)的通項公式,并指出點列,, ,,  向哪一點無限接近?說明理由;
(3)令,數(shù)列的前項和為,設,求所有可能的乘積的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設,過點作與軸不重合的直線交橢圓于兩點,連結(jié)、分別交直線、兩點.試問直線、的斜率之積是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:(a>b>0),過點(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線lx=2x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當點P在橢圓C上運動時,恒為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左右頂點分別為,離心率
(1)求橢圓的方程;
(2)若點為曲線:上任一點(點不同于),直線與直線交于點為線段的中點,試判斷直線與曲線的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓、兩點,交橢圓于另一點.

(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點分別是軸和軸上的動點,且,動點滿足,設動點的軌跡為E.
(1)求曲線E的方程;
(2)點Q(1,a),M,N為曲線E上不同的三點,且,過M,N兩點分別作曲線E的切線,記兩切線的交點為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,F1、F2分別為橢圓C的左、右兩個焦點,AB為兩個頂點,該橢圓的離心率為的面積為.

(1)求橢圓C的方程和焦點坐標;
(2)作與AB平行的直線交橢圓于P、Q兩點,,求直線的方程.

查看答案和解析>>

同步練習冊答案