在數(shù)列1 , 1 , 2 , 3 , 5 , 8 , 13,,34,…中,=_______
21
數(shù)學(xué)規(guī)律為從第三項(xiàng)起,每一項(xiàng)都等于前兩項(xiàng)的和.因而13+x=34,所以x=21
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

第(1)小題滿分4分,第(2)小題滿分6分,第(3)小題滿分8分.
如果存在常數(shù)使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.
(1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求的值;
(2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列是“兌換數(shù)列”,并用表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項(xiàng)和為,且滿足,
(Ⅰ)問:數(shù)列是否為等差數(shù)列?并證明你的結(jié)論;
(Ⅱ)求;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知遞增數(shù)列{an}的通項(xiàng)公式是,則實(shí)數(shù)λ的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的圖像在點(diǎn)處的切線與直線垂直,若數(shù)列的前項(xiàng)和為,則的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列的前n項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列:
(1)__________
(2)給出如下三個(gè)命題
①.數(shù)列是等比數(shù)列;
②.數(shù)列的前n項(xiàng)和為
③.若存在正整數(shù),使
其中正確的序號(hào)有            .(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

猜想數(shù)列的通項(xiàng)公式是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列1,,,,…的一個(gè)通項(xiàng)公式是an=_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列的通項(xiàng)公式為,則等于( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案