【題目】拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A,B是拋物線上的兩個動點(diǎn),且滿足∠AFB= .設(shè)線段AB的中點(diǎn)M在l上的投影為N,則 的最大值是( )
A.
B.
C.
D.
【答案】C
【解析】解:設(shè)|AF|=a,|BF|=b,A、B在準(zhǔn)線上的射影點(diǎn)分別為Q、P,
連接AQ、BQ
由拋物線定義,得|AF|=|AQ|且|BF|=|BP|,
在梯形ABPQ中根據(jù)中位線定理,得2|MN|=|AQ|+|BP|=a+b.
由余弦定理得|AB|2=a2+b2﹣2abcos =a2+b2+ab,
配方得|AB|2=(a+b)2﹣ab,
又∵ab≤( )2 ,
∴(a+b)2﹣ab≥(a+b)2﹣( )2= (a+b)2
得到|AB|≥ (a+b).
所以 ≤ = ,即 的最大值為 .
故選C.
設(shè)|AF|=a、|BF|=b,由拋物線定義結(jié)合梯形的中位線定理,得2|MN|=a+b.再由余弦定理得|AB|2=a2+b2+ab,結(jié)合基本不等式求得|AB|的范圍,從而可得 的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過5噸時,每噸為2.6元,當(dāng)用水超過5噸時,超過部分每噸4元,某月甲、乙兩戶共交水費(fèi)y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關(guān)于x的函數(shù);
(2)若甲、乙兩戶該月共交水費(fèi)34.7元,分別求甲、乙兩戶該月的用水量和水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m(sinx+cosx)﹣4sinxcosx,x∈[0, ],m∈R.
(1)設(shè)t=sinx+cosx,x∈[0, ],將f(x)表示為關(guān)于t的函數(shù)關(guān)系式g(t),并求出t的取值范圍;
(2)若關(guān)于x的不等式f(x)≥0對所有的x∈[0, ]恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程f(x)﹣2m+4=0在[0, ]上有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),函數(shù)f(x)= ﹣m| + |+1,x∈[﹣ , ],m∈R.
(1)當(dāng)m=0時,求f( )的值;
(2)若f(x)的最小值為﹣1,求實(shí)數(shù)m的值;
(3)是否存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)+ m2 , x∈[﹣ , ]有四個不同的零點(diǎn)?若存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)對于定義域內(nèi)的任意x都滿足 ,則稱f(x)具有性質(zhì)M.
(1)很明顯,函數(shù) (x∈(0,+∞)具有性質(zhì)M;請證明 (x∈(0,+∞)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù).
(2)已知函數(shù)g(x)=|lnx|,點(diǎn)A(1,0),直線y=t(t>0)與g(x)的圖象相交于B、C兩點(diǎn)(B在左邊),驗(yàn)證函數(shù)g(x)具有性質(zhì)M并證明|AB|<|AC|.
(3)已知函數(shù) ,是否存在正數(shù)m,n,k,當(dāng)h(x)的定義域?yàn)閇m,n]時,其值域?yàn)閇km,kn],若存在,求k的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P,Q分別是BC和CD的中點(diǎn).
(1)若AB=2,AD=1,∠BAD=60°,求 及cos∠BAC的余弦值;
(2)若 =λ + ,求λ+μ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:a∈(﹣∞,﹣ ],使得函數(shù)f(x)=|2x+ |在[﹣ ,3]上單調(diào)遞增;命題q:a∈[2,+∞),直線2x+y=0與雙曲線 ﹣x2=1(a>0)相交.則下列命題中正確的是( )
A.¬p
B.p∧q
C.(¬p)∨q
D.p∧(¬q)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩機(jī)床同時加工直徑為100mm的零件,為檢驗(yàn)質(zhì)量,隨機(jī)從中各抽取5件,測量結(jié)果如圖,請說明哪個機(jī)床加工的零件較好?
甲 | 99 | 100 | 98 | 100 | 103 |
乙 | 99 | 100 | 102 | 99 | 100 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com