【題目】某市居民自來水收費標準如下:每戶每月用水不超過5噸時,每噸為2.6元,當用水超過5噸時,超過部分每噸4元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x,3x噸.
(1)求y關于x的函數;
(2)若甲、乙兩戶該月共交水費34.7元,分別求甲、乙兩戶該月的用水量和水費.
【答案】
(1)解:由題意知,x≥0,令5x=5,得x=1;令3x=5,得x= .
則當0≤x≤1時,
y=(5x+3x)×2.6=20.8x
當1<x≤ 時,
y=5×2.6+(5x﹣5)×4+3x×2.6=27.8x﹣7,
當x> 時,
y=(5+5)×2.6+(5x+3x﹣5﹣5)×4=32x﹣14;
即得y=
(2)解:由于y=f(x)在各段區(qū)間上均單增,
當x∈[0,1]時,y≤f(1)=20.8<34.7;
當x∈(1, ]時,y≤f( )≈39.3>34.7;
令27.8x﹣7=34.7,得x=1.5,
所以甲戶用水量為5x=7.5噸,付費S1=5×2.6+2.5×4=23元
乙戶用水量為3x=4.5噸,付費S2=4.5×2.6=11.7元
【解析】(1)由題意知:x≥0,令5x=5,得x=1;令3x=5,得x= .將x取值范圍分三段,求對應函數解析式可得答案.(2)在分段函數各定義域上討論函數值對應的x的值
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點
(1)求證:DE∥平面ABC;
(2)求三棱錐E﹣BCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】盒子中有5個大小形狀完全相同的小球,其中黑色小球有3個,標號分別為1,2,3,白色小球有2個,標號分別為1,2.
(1)若從盒中任取兩個小球,求取出的小球顏色相同且標號之和小于或等于4的概率;
(2)若盒子里再放入一個標號為4的紅色小球,從中任取兩個小球,求取出的兩個小球顏色不同且標號之和大于3的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在三棱錐S﹣ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC、SC于D、E,又SA=AB,SB=BC,
(1)求證:BD⊥平面SAC;
(2)求二面角E﹣BD﹣C的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班50位學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].已知圖中x=0.018,則由直觀圖估算出中位數(精確到0.1)的值為( )
A.75.5
B.75.2
C.75.1
D.75.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】樣本(x1 , x2…,xn)的平均數為x,樣本(y1 , y2 , …,ym)的平均數為 ( ≠ ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數 =α +(1﹣α) ,其中0<α< ,則n,m的大小關系為( )
A.n<m
B.n>m
C.n=m
D.不能確定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=4 x的交點為橢圓 (a>b>0)的右焦點,且橢圓的長軸長為4,左右頂點分別為A,B,經過橢圓左焦點的直線l與橢圓交于C,D(異于A,B)兩點.
(1)求橢圓標準方程;
(2)求四邊形ADBC的面積的最大值;
(3)若M(x1 , y1)N(x2 , y2)是橢圓上的兩動點,且滿x1x2+2y1y2=0,動點P滿足 (其中O為坐標原點),是否存在兩定點F1 , F2使得|PF1|+|PF2|為定值,若存在求出該定值,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足∠AFB= .設線段AB的中點M在l上的投影為N,則 的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com