【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過點(diǎn)的圓的切線為.

(1)求直線的極坐標(biāo)方程;

(2)求圓上到直線的距離最大的點(diǎn)的直角坐標(biāo).

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:根據(jù)可知切線的傾斜角為,設(shè)為切線上的動(dòng)點(diǎn), ,在內(nèi)利用正弦定理列出方程,整理得出切線方程;第二步利用圓的參數(shù)方程巧設(shè)點(diǎn),借助點(diǎn)到直線的距離公式和三角函數(shù)求最值.

試題解析:

(Ⅰ)由題設(shè)知,圓心 ,,故過點(diǎn)的切線傾斜角為30°,設(shè)是過點(diǎn)的圓C的切線上的任一點(diǎn),則在中, ,由正弦定理得 ,即為所求切線的極坐標(biāo)方程.

(Ⅱ)直線方程為,設(shè)圓上點(diǎn)坐標(biāo)為,則,所以當(dāng),即時(shí)距離最大,此時(shí)點(diǎn)的坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了紀(jì)念“中國(guó)紅軍長(zhǎng)征90周年”,增強(qiáng)學(xué)生對(duì)“長(zhǎng)征精神”的深刻理解,在全校組織了一次有關(guān)“長(zhǎng)征”的知識(shí)競(jìng)賽,經(jīng)過初賽、復(fù)賽,甲、乙兩個(gè)代表隊(duì)(每隊(duì)3人)進(jìn)入了決賽,規(guī)定每人回答一個(gè)問題,答對(duì)為本隊(duì)贏得20分,答錯(cuò)得0分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中3人答對(duì)的概率分別為, , ,且各人回答正確與否相互之間沒有影響,用表示乙隊(duì)的總得分.

(1)求的分布列和均值;

(2)求甲、乙兩隊(duì)總得分之和等于40分且甲隊(duì)獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某物體一天中的溫度是時(shí)間的函數(shù),已知,其中溫度的單位是,時(shí)間的單位是小時(shí),規(guī)定中午12:00相應(yīng)的,中午12:00以后相應(yīng)的取正數(shù),中午12:00以前相應(yīng)的取負(fù)數(shù)(例如早上8:00相應(yīng)的,下午16:00相應(yīng)的),若測(cè)得該物體在中午12:00的溫度為,在下午13:00的溫度為,且已知該物體的溫度在早上8:00與下午16:00有相同的變化率.

(1)求該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;

(2)該物體在上午10:00至下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率之比為

(1)求這些產(chǎn)品質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的頻率;

(2)若將頻率視為概率,從該企業(yè)生產(chǎn)的這種產(chǎn)品中隨機(jī)抽取3件,記這3件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間內(nèi)的產(chǎn)品件數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了降低能源消耗,某冷庫(kù)內(nèi)部要建造可供使用20年的隔熱層,每厘米厚的隔熱層建造成本為4萬元,又知該冷庫(kù)每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位: )滿足關(guān)系,若不建隔熱層,每年能源消耗為8萬元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.

(1)求的值及的表達(dá)式;

(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最?并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓,離心率,且橢圓過點(diǎn).

(1)求橢圓的方程;

(2)設(shè)橢圓左、右焦點(diǎn)分別為,過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎(jiǎng)懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對(duì)餐廳服務(wù)質(zhì)量打分(5分制),得到如下柱狀圖:

(1)從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分的概率;

(2)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨(dú)立)記表示兩人打分之和,求的分布列和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題實(shí)數(shù)滿足,其中,命題實(shí)數(shù)滿足.

(1)若,有為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列, 滿足, ,且, .

(1)求

(2)猜想, 的通項(xiàng)公式,并證明你的結(jié)論;

(3)證明:對(duì)所有的, .

查看答案和解析>>

同步練習(xí)冊(cè)答案