【題目】已知正方形ABCD一邊CD所在直線的方程為x+3y-13=0,對角線AC,BD的交點為P(1,5),求正方形ABCD其他三邊所在直線的方程.

【答案】

【解析】

先利用平行求直線AB的方程,再利用垂直AD,CB的方程.

因為點P(1,5)到lCD的距離為d

d.

lABlCD,∴可設(shè)lABx+3ym=0.

P(1,5)到lAB的距離也等于d,

又∵m≠-13,∴m=-19,即lABx+3y-19=0.

lADlCD,∴可設(shè)lAD:3xyn=0,

P(1,5)到lAD的距離等于P(1,5)到lBC的距離,且都等于d,

n=5,或n=-1,

lAD:3xy+5=0,lBC:3xy-1=0.

所以,正方形ABCD其他三邊所在直線方程為x+3y-19=0,3xy+5=0,3xy-1=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐, 平面平面,.

1)求證:平面;

2)求直線與平面所成角的正弦值;

3)在棱上是否存在點,使得平面?若存在, 的值;若不存在, 說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,.

(1)已畫出函數(shù)軸左側(cè)的圖像,如圖所示,請補出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;

⑵寫出函數(shù)的解析式和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若m﹣ <x (m∈Z),則m叫做離實數(shù)x最近的整數(shù),記作{x},即m={x},關(guān)于函數(shù)f(x)=x﹣{x}的四個命題:①定義域為R,值域為(﹣ , ]; ②點(k,0)是函數(shù)f(x)圖象的對稱中心(k∈Z);③函數(shù)f(x)的最小正周期為1; ④函數(shù)f(x)在(﹣ , ]上是增函數(shù).上述命題中,真命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某煤礦發(fā)生透水事故時,作業(yè)區(qū)有若干人員被困.救援隊從入口進(jìn)入之后有L1L2兩條巷道通往作業(yè)區(qū)(如下圖),L1巷道有A1A2,A3三個易堵塞點,各點被堵塞的概率都是L2巷道有B1,B2兩個易堵塞點,被堵塞的概率分別為.

(1)求L1巷道中,三個易堵塞點最多有一個被堵塞的概率;

(2)若L2巷道中堵塞點個數(shù)為X,求X的分布列及均值E(X),并按照“平均堵塞點少的巷道是較好的搶險路線”的標(biāo)準(zhǔn),請你幫助救援隊選擇一條搶險路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬奧會,推廣滑雪運動,某滑雪場開展滑雪促銷活動.該滑雪場的收費標(biāo)準(zhǔn)是:滑雪時間不超過1小時免費,超過1小時的部分每小時收費標(biāo)準(zhǔn)為40元(不足1小時的部分按1小時計算).有甲、乙兩人相互獨立地來該滑雪場運動,設(shè)甲、乙不超過1小時離開的概率分別為,;1小時以上且不超過2小時離開的概率分別為;兩人滑雪時間都不會超過3小時.

(1)求甲、乙兩人所付滑雪費用相同的概率;

(2)設(shè)甲、乙兩人所付的滑雪費用之和為隨機變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點 ,橢圓 )的離心率為 是橢圓 的右焦點,直線 的斜率為, 為坐標(biāo)原點.

(1)求 的方程;

(2)設(shè)過點 的動直線 相交于 , 兩點,當(dāng) 的面積最大時,求 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①如果是兩條直線,且,那么平行于經(jīng)過的任何平面;

②如果直線和平面滿足,那么直線與平面內(nèi)的任何直線平行;

③如果直線和平面滿足,,那么;

④如果直線,和平面滿足,,,那么;

⑤如果平面,滿足,那么.

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別是a,b,c,已知2acosA=-(ccosB+bcosC)。

(1)求角A;

(2)若b=2,且ABC的面積為,求a的值.

查看答案和解析>>

同步練習(xí)冊答案