【題目】某超市春節(jié)大酬賓,購物滿100元可參加一次抽獎活動,規(guī)則如下:顧客將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應獲得袋子里的獎品.已知小球每次遇到黑色障礙物時,向左向右下落的概率都為.若活動當天小明在該超市購物消費108元,按照活動規(guī)則,他可參加一次抽獎,則小明獲得A袋中的獎品的概率為_____.

【答案】

【解析】

小球落入A袋中的概率為,由此利用對立事件概率計算公式能求出小球落入A袋中的概率.

∵將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂陕湎,小球在下落過程中,

3次遇到黑色障礙物,最后落入A袋或B袋中,

小球每次遇到黑色障礙物時,向左、右兩邊下落的概率分別為

小球落入A袋中的概率為:.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求該函數(shù)的最大值;

2)是否存在實數(shù),使得該函數(shù)在閉區(qū)間上的最大值為?若存在,求出對應的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有如下四個命題:

①甲乙兩組數(shù)據(jù)分別為甲:28,31,39,42,45,55,57,58,66;乙:29,34,35,48,42,46,55,53,55,67.則甲乙的中位數(shù)分別為45和44.

②相關(guān)系數(shù),表明兩個變量的相關(guān)性較弱.

③若由一個22列聯(lián)表中的數(shù)據(jù)計算得的觀測值,那么有95%的把握認為兩個變量有關(guān).

④用最小二乘法求出一組數(shù)據(jù)的回歸直線方程后要進行殘差分析,相應于數(shù)據(jù)的殘差是指.

以上命題“錯誤”的序號是_________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]在平面坐標系中xOy中,已知直線l的參考方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù))。設(shè)p為曲線C上的動點,求點P到直線l的距離的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國于201510月宣布實施普遍二孩政策,為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡群體中隨機抽取了容量為140的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各70人;男性60人,女性80人,繪制的不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例如圖所示,其中陰影部分表示傾向選擇生育二胎的對應比例,則下列敘述正確的是( )

A.是否傾向選擇生育二胎與戶籍有關(guān)

B.是否傾向選擇生育二胎與性別有關(guān)

C.調(diào)查樣本里面傾向選擇生育二胎的人群中,男性人數(shù)少于女性人數(shù)

D.傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)多于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形中,邊所在的直線方程分別為的中點為.

1)求的坐標;

2)求角的內(nèi)角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=lnx,其中a0.曲線y=fx)在點(1f1))處的切線與直線y=x+1垂直.

1)求函數(shù)fx)的單調(diào)區(qū)間;

2)求函數(shù)fx)在區(qū)間[1,e]上的極值和最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了積極支持雄安新區(qū)建設(shè),鼓勵更多優(yōu)秀大學生畢業(yè)后能到新區(qū)去,某985高校組織了一次模擬招聘活動,現(xiàn)從考試成績中隨機抽取100名學生的筆試成績,并按成績分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,(由于某種原因,部分直方圖不夠清晰),同時規(guī)定成績不低于90分為“優(yōu)秀”,成績低于90分為“良好”,且只有成績“優(yōu)秀”的學生才能獲得專題測試資格.

(1)若已知分數(shù)段的人數(shù)比為2:1,請補全損壞的直方圖;

(2)如果用分層抽樣的方法從成績?yōu)椤皟?yōu)秀”和“良好”中選出10人,設(shè)甲是選出的成績“優(yōu)秀”中的一個,若從選出的成績“優(yōu)秀”的學生中再任選2人參加兩項不同的專題測試(每人參加一種,二者互不相同),求甲被選中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

若函數(shù)在區(qū)間上為增函數(shù),求a的取值范圍;

若對任意恒成立,求實數(shù)m的最大值.

查看答案和解析>>

同步練習冊答案