【題目】如圖,在幾何體ABDCE中,AB=AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,AE=MC.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.

【答案】證明:(1)∵AB=AD,M為線段BD的中點,∴AM⊥BD.
∵AE⊥平面ABD,MC∥AE,∴MC⊥平面ABD.
∴MC⊥AM,∴AM⊥平面CBD.
又MC∥AE,MC=AE,∴四邊形AMCE為平行四邊形,
∴EC∥AM,∴EC⊥平面CBD,
∴平面BCD⊥平面CDE.
(2)∵M為BD中點,N為ED中點,
∴MN∥BE
由(1)知,EC∥AM且AM∩MN=M,BE∩EC=E,
∴平面AMN∥平面BEC.
【解析】(1)先證明AM⊥BD,MC⊥AM,從而AM⊥平面CBD,再由EC⊥平面CBD,能證明平面BCD⊥平面CDE.
(2)由三角形中位線定理得MN∥BE,再由EC∥AM,能證明平面AMN∥平面BEC.
【考點精析】認真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行),還要掌握直線與平面垂直的性質(垂直于同一個平面的兩條直線平行)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱柱中, 為底面的對角線, 的中點.

(1)求證: ;

(2)求證: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與y軸的正半軸相交于點M,且橢圓E上相異兩點A、B滿足直線MA,MB的斜率之積為

(Ⅰ)證明直線AB恒過定點,并求定點的坐標;

(Ⅱ)求三角形ABM的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB= , BC=AA1=1,點M為AB1的中點,點P為對角線AC1上的動點,點Q為底面ABCD上的動點(點P、Q可以重合),則MP+PQ的最小值為( 。
A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點為, 的中點.求:

(1) 所在直線的方程;

(2) 邊上中線所在直線的方程;

(3) 邊上的垂直平分線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】濰坊文化藝術中心的觀光塔是濰坊市的標志性建筑,某班同學準備測量觀光塔的高度單位:米),如圖所示,垂直放置的標桿的高度米,已知, .

1)該班同學測得一組數(shù)據: ,請據此算出的值;

2該班同學分析若干測得的數(shù)據后,發(fā)現(xiàn)適當調整標桿到觀光塔的距離單位:米),使的差較大,可以提高測量精確度,若觀光塔高度為136米,問為多大時, 的值最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx=|x+1|+|x-1|,不等式fx<4的解集為M.

1M.

2a,bM,證明:2|a+b|<|4+ab|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選拔選手參加“中國謎語大會”,某中學舉行了一次“謎語大賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計.按照 , , 的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據).

(Ⅰ)求樣本容量和頻率分布直方圖中的, 的值;

(Ⅱ)分數(shù)在的學生設為一等獎,獲獎學金500元;分數(shù)在的學生設為二等獎,獲獎學金200元.已知在樣本中,獲一、二等獎的學生中各有一名男生,則從剩下的女生中任取三人,求獎學金之和大于600的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)在[0,+∞)上遞增,=0,已知g(x)=﹣f(|x|),滿足的x的取值范圍是(  )
A.(0,+∞)
B.
C.
D.

查看答案和解析>>

同步練習冊答案