【題目】已知函數(shù)f(x)在[0,+∞)上遞增,=0,已知g(x)=﹣f(|x|),滿足的x的取值范圍是( 。
A.(0,+∞)
B.
C.
D.

【答案】D
【解析】解:∵g(x)=﹣f(|x|),
∴g(﹣x)=﹣f(|﹣x|)=﹣f(|x|)=g(x),
故g(x)是偶函數(shù),
且g()=﹣f()=0,g(﹣)=﹣f(|﹣|)=﹣f()=0,
當x≥0是,f(x)為增函數(shù),此時g(x)=﹣f(|x|)=﹣f(x)為減函數(shù),
則不等式等價為g(|x|)>g(),
x|< ,
即﹣x<
<x<2,
故選:D.
【考點精析】利用函數(shù)單調(diào)性的性質(zhì)對題目進行判斷即可得到答案,需要熟知函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體ABDCE中,AB=AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,AE=MC.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的是一個幾何體的直觀圖和三視圖(其中正視圖為直角梯形,俯視圖為正方形,側(cè)視圖為直角三角形).

(1)求四棱錐P-ABCD的體積;

(2)若G為BC上的動點,求證:AEPG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學周練成績,用莖葉圖表示如下圖:

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認為經(jīng)常使用手機對學習成績有影響?

及格(

不及格

合計

很少使用手機

經(jīng)常使用手機

合計

(2)從50人中,選取一名很少使用手機的同學記為甲和一名經(jīng)常使用手機的同學記為乙,解一道數(shù)列題,甲、乙獨立解決此題的概率分別為, , ,若,則此二人適合結為學習上互幫互助的“師徒”,記為兩人中解決此題的人數(shù),若,問兩人是否適合結為“師徒”?

參考公式及數(shù)據(jù): ,其中.

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線焦點且傾斜角的直線與拋物線交于點 的面積為

(I)求拋物線的方程;

(II)設是直線上的一個動點,過作拋物線的切線,切點分別為直線與直線軸的交點分別為是以為圓心為半徑的圓上任意兩點,求最大時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與拋物線共焦點,拋物線上的點My軸的距離等于,且橢圓與拋物線的交點Q滿足

(I)求拋物線的方程和橢圓的方程;

(II)過拋物線上的點作拋物線的切線交橢圓于 兩點,設線段AB的中點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)設,求數(shù)列項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD的頂點P在底面ABCD上的投影恰好是A,其正視圖與側(cè)視圖都是腰長為a的等腰直角三角形.則在四棱錐P﹣ABCD的任意兩個頂點的連線中,互相垂直的異面直線共有 對.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角三角形中, , , , 為線段上一點,且,沿邊上的中線折起到的位置.

(Ⅰ)求證: ;

(Ⅱ)當平面平面時,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案