定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)在[-3,-2]上是減函數(shù),α,β是銳角三角形的兩個(gè)內(nèi)角,則f(sinα)與f(cosβ)的大小關(guān)系是( 。
A、f(sinα)>f(cosβ)
B、f(sinα)<f(cosβ)
C、f(sinα)=f(cosβ)
D、f(sinα)與f(cosβ)的大小關(guān)系不確定
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由條件f(x+1)=-f(x),得到f(x)是周期為2的周期函數(shù),由f(x)是定義在R上的偶函數(shù),在[-3,-2]上是減函數(shù),得到f(x)在[2,3]上是增函數(shù),在[0,1]上是增函數(shù),再由α,β是銳角三角形的兩個(gè)內(nèi)角,得到α>90°-β,且sinα、cosβ都在區(qū)間[0,1]上,從而得到f(sinα)>f(cosβ).
解答: 解:∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),f(x)是周期為2的周期函數(shù).
∵y=f(x)是定義在R上的偶函數(shù),∴f(-x)=f(x),
∵f(x)在[-3,-2]上是減函數(shù),
∴在[2,3]上是增函數(shù),∴在[0,1]上是增函數(shù),
∵α,β是銳角三角形的兩個(gè)內(nèi)角.
∴α+β>90°,α>90°-β,兩邊同取正弦得:sinα>sin(90°-β)=cosβ,且sinα、cosβ都在區(qū)間[0,1]上,
∴f(sinα)>f(cosβ),
故選:A.
點(diǎn)評(píng):本題主要考查了函數(shù)的奇偶性和周期性的應(yīng)用,三角函數(shù)的圖象和性質(zhì),綜合考查了函數(shù)的奇偶性、周期性和單調(diào)性的應(yīng)用,綜合性較強(qiáng),涉及的知識(shí)點(diǎn)較多.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,an∈C,a12+a22+a32=-1,求a1•a3=( 。
A、2iB、-2iC、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中為冪函數(shù)且為偶函數(shù)的是( 。
A、f(x)=x2
B、f(x)=3x
C、f(x)=(1-x)2
D、f(x)=x 
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)E(-
p
2
,0)的直線與拋物線y2=2px(p>0)交于A、B兩點(diǎn),F(xiàn)是拋物線的焦點(diǎn),若A為線段EB的中點(diǎn),且|AF|=3,則p=( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖的算法流程圖的輸出結(jié)果是(  )
A、5B、7C、9D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinx+acosx,
(1)若a=
3
,求f(x)的最大值及對(duì)應(yīng)的x的值.
(2)若f(
π
4
)=0,f(x)=
1
5
(0<x<π),求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),對(duì)任意x,y∈(0,+∞)都有f(
x
y
)=f(x)-f(y),且當(dāng)x>1時(shí),f(x)>0.
(1)求證f(1)=0;
(2)判斷f(x)在(0,+∞)上的單調(diào)性;
(3)若f(2)=1,不等式f(x)-f(
1
x-3
)≤2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=2an+1,令bn=an+1-an
(1)證明:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)數(shù)列{nan}的前n項(xiàng)和為Sn,求使Sn+
n(n+1)
2
>120成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

邊長為4的菱形ABCD中,∠A=60°,E為線段CD上的中點(diǎn),以BE為折痕,將△ACE折起,使得二面角C-BE-C成θ角(如圖)
(Ⅰ)當(dāng)θ在(0,π)內(nèi)變化時(shí),直線AD與平面BCE是否會(huì)平行?請(qǐng)說明理由;
(Ⅱ)若θ=90°,求直線CA與平面BCE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案