在等差數(shù)列{an}中,an∈C,a12+a22+a32=-1,求a1•a3=( 。
A、2iB、-2iC、2D、-2
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由題意可得,i+1.i,i-1,符合題意,即可得出結(jié)論.
解答: 解:由題意可得,i+1,i,i-1,符合題意,
∴a1•a3=-2,
故選:D.
點評:本題考查等差數(shù)列的性質(zhì),考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

sin
13π
6
=( 。
A、
1
2
B、-
1
2
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論不正確的是( 。
A、x,y為正數(shù),則
x
y
+
y
x
≥2
B、
x2+2
x2+1
≥2
C、lgx+logx10≥2
D、a為正數(shù),則(1+a)(1+
1
a
)≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲一枚骰子,觀察出現(xiàn)的點數(shù),若已知出現(xiàn)的點數(shù)不超過4,則出現(xiàn)的點數(shù)是奇數(shù)的概率為(  )
A、
1
3
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足:①當(dāng)0≤x≤2時,f(x)=(x-1)2,②?x∈[0,8],f(x-
1
2
)=f(x+
3
2
).若方程f(x)=Mlog2x在[0,8]上有偶數(shù)個根,則正數(shù)M的取值范圍是( 。
A、0<M≤
1
3
B、0<M≤
1
3
或M=1或2
C、0<M≤
1
3
或M=1或
1
2
D、0<M≤
1
3
或M=1或
1
2
或log62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|lgx|,x>0
x+7,x≤0
,若關(guān)于x的方程f(x2+2x)=a有6個不相等的實根,則實數(shù)a的取值范圍是( 。
A、(0,6]
B、(0,7]
C、(6,7]
D、(6,7)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,若cosB=
3
4
,sinC=2sinA,且S△ABC=
7
4
,則b=( 。
A、
2
B、2
C、2
2
D、
30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點O為△ABC所在平面內(nèi)一點,且
OA
2+
BC
2=
OB
2+
CA
2,那么點O的軌跡一定過△ABC的( 。
A、重心B、垂心C、內(nèi)心D、外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x),且f(x)在[-3,-2]上是減函數(shù),α,β是銳角三角形的兩個內(nèi)角,則f(sinα)與f(cosβ)的大小關(guān)系是(  )
A、f(sinα)>f(cosβ)
B、f(sinα)<f(cosβ)
C、f(sinα)=f(cosβ)
D、f(sinα)與f(cosβ)的大小關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊答案