已知A、B、C是橢圓W:上的三個點,O是坐標(biāo)原點.

(I)當(dāng)點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;

(II)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由。

 

【答案】

(I) .

(II)當(dāng)點B不是W的頂點時,四邊形OABC不可能是菱形. 

【解析】

試題分析:

思路分析:(I)根據(jù)四邊形OABC為菱形, AC與OB相互垂直平分. 注意確定.

(II)假設(shè)四邊形OABC為菱形.  因為點B不是W的頂點,且直線AC不過原點,所以可設(shè)AC的方程為.

消去應(yīng)用韋達定理確定AC的中點為M(,).

得到直線OB的斜率為. 因為,所以AC與OB不垂直.所以當(dāng)點B不是W的頂點時,四邊形OABC不可能是菱形. 

解:(I)橢圓W:的右頂點B的坐標(biāo)為(2,0).因為四邊形OABC為菱形,所以AC與OB相互垂直平分. 所以可設(shè)A(1,),代入橢圓方程得,即.  所以菱形OABC的面積是.

(II)假設(shè)四邊形OABC為菱形.  因為點B不是W的頂點,且直線AC不過原點,所以可設(shè)AC的方程為.

消去并整理得.

設(shè)A,C,則,.

所以AC的中點為M(,).

因為M為AC和OB的交點,所以直線OB的斜率為.

因為,所以AC與OB不垂直.  所以O(shè)ABC不是菱形,與假設(shè)矛盾.

所以當(dāng)點B不是W的頂點時,四邊形OABC不可能是菱形. 

考點:橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,菱形的性質(zhì)。

點評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往通過聯(lián)立方程組,應(yīng)用韋達定理,簡化解題過程。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點,其中點A的坐標(biāo)為(2
3
,0)
,BC過橢圓M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求橢圓M的方程;
(2)過點(0,t)的直線l(斜率存在時)與橢圓M交于兩點P、Q,設(shè)D為橢圓M與y軸負半軸的交點,且|
DP
|=|
DQ
|
,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點,其中點A的坐標(biāo)為(2
3
,0),BC
過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)上的三點,其中點A的坐標(biāo)為(2
3
,0),BC過橢圓m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求橢圓m的方程;
(2)過點M(0,t)的直線l(斜率存在時)與橢圓m交于兩點P,Q,設(shè)D為橢圓m與y軸負半軸的交點,且|
DP
|=|
DQ
|.求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上的三點,,BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)已知A,B,C是橢圓W:
x24
+y2=1
上的三個點,O是坐標(biāo)原點.
(Ⅰ)當(dāng)點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(Ⅱ)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案