【題目】已知函數(shù)
(1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)若α∈(0,π),且f=,求tan的值.
【答案】(1)最小正周期,單調(diào)減區(qū)間為(2)
【解析】分析:(1)根據(jù)原式結(jié)合二倍角公式,降冪公式,輔助角公式進(jìn)行化簡(jiǎn),然后計(jì)算周期,根據(jù)正弦函數(shù)的基本性質(zhì)求得單調(diào)區(qū)間;(2)∵f()=,即sin=1. 可得α的值,然后按正切的和差公式打開(kāi)即可求解.
解:(1)f(x)=(2cos2x-1)sin 2x+cos 4x
=cos 2xsin 2x+cos 4x
= (sin 4x+cos 4x)
=sin,
∴f(x)的最小正周期T=.
令2kπ+≤4x+≤2kπ+π,k∈Z,
得+≤x≤+,k∈Z.
∴f(x)的單調(diào)減區(qū)間為,k∈Z.
(2)∵f=,
即sin=1.
因?yàn)?/span>α/span>∈(0,π),- <α-<,
所以α-=,故α=.
因此tan===2-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在上的一點(diǎn)的正北方向的處建一倉(cāng)庫(kù),并在公路同側(cè)建造一個(gè)正方形無(wú)頂中轉(zhuǎn)站(其中邊在上),現(xiàn)從倉(cāng)庫(kù)向和中轉(zhuǎn)站分別修兩條道路,,已知,且,設(shè),.
(1)求關(guān)于的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周圍墻(即正方形周長(zhǎng))造價(jià)為萬(wàn)元,兩條道路造價(jià)為萬(wàn)元,問(wèn):取何值時(shí),該公司建中轉(zhuǎn)圍墻和兩條道路總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|3x﹣4|.
(Ⅰ)記函數(shù)g(x)=f(x)+|x+2|﹣4,在下列坐標(biāo)系中作出函數(shù)g(x)的圖象,并根據(jù)圖象求出函數(shù)g(x)的最小值;
(Ⅱ)記不等式f(x)<5的解集為M,若p,q∈M,且|p+q+pq|<λ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C: ,點(diǎn) 在x軸的正半軸上,過(guò)點(diǎn)M的直線 與拋物線C相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若 ,且直線 的斜率為1,求以AB為直徑的圓的方程;
(2)是否存在定點(diǎn)M,使得不論直線 繞點(diǎn)M如何轉(zhuǎn)動(dòng), 恒為定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為 ,且過(guò)點(diǎn) .
(1)求橢圓 的方程;
(2)設(shè)不過(guò)原點(diǎn) 的直線 與橢圓 交于 兩點(diǎn),直線 的斜率分別為 ,滿足 ,試問(wèn):當(dāng) 變化時(shí), 是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下的資料:
該興趣小組確定的研究方案是:現(xiàn)從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選用的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
參考公式:
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月的數(shù)據(jù),求出 關(guān)于 的線性回歸方程 ;
(3)若有線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)(2)中所得線性回歸方程是否是理想?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)方程有兩個(gè)不等的負(fù)根,方程無(wú)實(shí)根,若“”為真,“”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com