【題目】已知實(shí)數(shù),設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若對(duì)任意的,均有,求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
【答案】(1)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增;(2)
【解析】
(1)求導(dǎo)后取出極值點(diǎn),再分,兩種情況進(jìn)行討論即可.
(2)當(dāng)時(shí)得出的一個(gè)取值范圍,再討論時(shí)的情況,再對(duì)時(shí)構(gòu)造函數(shù)兩邊取對(duì)數(shù)進(jìn)行分析論證時(shí)恒成立.
(1)由,解得.
①若,則當(dāng)時(shí),,故在內(nèi)單調(diào)遞增;
當(dāng)時(shí),,故在內(nèi)單調(diào)遞減.
②若,則當(dāng)時(shí),,故在內(nèi)單調(diào)遞增;
當(dāng)時(shí),,故在內(nèi)單調(diào)遞減.
綜上所述,在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.
(2),即.
令,得,則.
當(dāng)時(shí),不等式顯然成立,
當(dāng)時(shí),兩邊取對(duì)數(shù),即恒成立.
令函數(shù),即在內(nèi)恒成立.
由,得.
故當(dāng)時(shí),,單調(diào)遞增;
當(dāng)時(shí),,單調(diào)遞減.
因此.
令函數(shù),其中,
則,得,
故當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.
又,,
故當(dāng)時(shí),恒成立,因此恒成立,
即當(dāng)時(shí),對(duì)任意的,均有成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是函數(shù)的反函數(shù),解方程;
(2)當(dāng)時(shí),定義,設(shè),數(shù)列的前n項(xiàng)和為,求及;
(3)對(duì)于任意,其中,當(dāng)能作為一個(gè)三角形的三邊長(zhǎng)時(shí),也總能作為一個(gè)三角形的三邊長(zhǎng),試探究M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與直線有且只有一個(gè)交點(diǎn),點(diǎn)P為橢圓C上任一點(diǎn),,.若的最小值為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓C交于不同兩點(diǎn)A,B,點(diǎn)O為坐標(biāo)原點(diǎn),且,當(dāng)的面積S最大時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國(guó)致力于發(fā)展風(fēng)力發(fā)電,近10年來(lái),全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量連年攀升,中國(guó)更是發(fā)展迅猛,2014年累計(jì)裝機(jī)容量就突破了,達(dá)到,中國(guó)的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級(jí)換代行動(dòng)中體現(xiàn)出大國(guó)的擔(dān)當(dāng)與決心.以下是近10年全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量與中國(guó)新增裝機(jī)容量圖. 根據(jù)所給信息,正確的統(tǒng)計(jì)結(jié)論是( )
A.截止到2015年中國(guó)累計(jì)裝機(jī)容量達(dá)到峰值
B.10年來(lái)全球新增裝機(jī)容量連年攀升
C.10年來(lái)中國(guó)新增裝機(jī)容量平均超過(guò)
D.截止到2015年中國(guó)累計(jì)裝機(jī)容量在全球累計(jì)裝機(jī)容量中占比超過(guò)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的零點(diǎn);
(2)若函數(shù)存在極小值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),離心率為,為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓上的三點(diǎn),與交于點(diǎn),且,當(dāng)的中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動(dòng)新能源汽車(chē)產(chǎn)業(yè)的迅速發(fā)展.下表是近幾年我國(guó)某地區(qū)新能源乘用車(chē)的年銷(xiāo)售量與年份的統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
銷(xiāo)量(萬(wàn)臺(tái)) | 8 | 10 | 13 | 25 | 24 |
某機(jī)構(gòu)調(diào)查了該地區(qū)30位購(gòu)車(chē)車(chē)主的性別與購(gòu)車(chē)種類(lèi)情況,得到的部分?jǐn)?shù)據(jù)如下表所示:
購(gòu)置傳統(tǒng)燃油車(chē) | 購(gòu)置新能源車(chē) | 總計(jì) | |
男性車(chē)主 | 6 | 24 | |
女性車(chē)主 | 2 | ||
總計(jì) | 30 |
(1)求新能源乘用車(chē)的銷(xiāo)量關(guān)于年份的線性相關(guān)系數(shù),并判斷與是否線性相關(guān);
(2)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為購(gòu)車(chē)車(chē)主是否購(gòu)置新能源乘用車(chē)與性別有關(guān);
(3)若以這30名購(gòu)車(chē)車(chē)主中購(gòu)置新能源乘用車(chē)的車(chē)主性別比例作為該地區(qū)購(gòu)置新能源乘用車(chē)的車(chē)主性別比例,從該地區(qū)購(gòu)置新能源乘用車(chē)的車(chē)主中隨機(jī)選取50人,記選到女性車(chē)主的人數(shù)為X,求X的數(shù)學(xué)期望與方差.
參考公式:,,其中.,若,則可判斷與線性相關(guān).
附表:
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P到直線的距離與到點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)P的軌跡;
(2)直線與曲線交于不同的兩點(diǎn)A,B(A,B在軸的上方):
①當(dāng)A為橢圓與軸的正半軸的交點(diǎn)時(shí),求直線的方程;
②對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com