已知橢圓的離心率為,左右焦點分別為,且.
(1)求橢圓C的方程;
(2)過點的直線與橢圓相交于兩點,且,求的面積.
(1);(2)
【解析】
試題分析:(1)因為要求橢圓的方程,必須求出兩個關(guān)于橢圓的三個基本量的等式,依題意可得,離心率,焦距的長即可求出相應(yīng)的的大小,從而可求出橢圓的方程.
(2)要求三角形的面積通過求出弦長和焦點到直線的距離,從而根據(jù)三角形的面積可得三角形的面積.弦長公式的計算需要具備解方程的能力,應(yīng)用韋達定理,弦長公式,化簡等式的能力;運用點到直線的距離公式計算三角形的高.
試題解析:(1)由已知 ,所以 .
因為橢圓的離心率為,所以.
所以 . 所以 ,
故橢圓C的方程為.
(2)若直線的方程為,則,不符合題意.
設(shè)直線的方程為,
由 消去y得 ,
顯然成立,設(shè),
則
.
由已知 ,解得.當 ,直線的方程為,即,
點到直線的距離.所以的面
積.
當,的面積也等于.
綜上,的面積等于.
考點:1.直線與圓的位置關(guān)系.2.待定系數(shù)求橢圓的方程.3.解方程的能力.4.三角形的面積公式.
科目:高中數(shù)學 來源:2015屆北京海淀區(qū)高二上學期期末考試文科數(shù)學試卷(解析版) 題型:選擇題
已知函數(shù)的導(dǎo)函數(shù)為,那么“”是“是函數(shù)的一個極值點”的( )
(A)充分而不必要條件 (B)必要而不充分條件
(C)充要條件 (D)既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆北京市西城區(qū)高二第一學期期末理科數(shù)學試卷(解析版) 題型:選擇題
已知正方體,點,,分別是線段,和上的動點,觀察直線與,與.給出下列結(jié)論:
①對于任意給定的點,存在點,使得;
②對于任意給定的點,存在點,使得;
③對于任意給定的點,存在點,使得;
④對于任意給定的點,存在點,使得.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆北京市西城區(qū)高二第一學期期末文科數(shù)學試卷(解析版) 題型:填空題
已知一個正方體的八個頂點都在同一個球面上,若此正方體的棱長為,那么這個球的表面積為_______.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆北京市西城區(qū)高二第一學期期末文科數(shù)學試卷(解析版) 題型:選擇題
如圖,在正方體中,下列結(jié)論不正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆北京東城(南片)高二上學期期末考試理數(shù)學試卷(解析版) 題型:填空題
下列命題中,真命題的是 .
①必然事件的概率等于l
②命題“若b=3,則b2=9”的逆命題
③對立事件一定是互斥事件
④命題“相似三角形的對應(yīng)角相等”的逆否命題
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆北京東城區(qū)高二第一學期期末考試理科數(shù)學試卷(解析版) 題型:選擇題
在正方體中,與所在直線所成的角為是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com