圓
上的點到直線
的最大距離是____
_____。
8
;
因為把圓的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)和圓的半徑,過圓心M作已知直線的垂線,與圓分別交于A和B點,垂足為C,由圖形可知|AC|為圓上點到已知直線的最大距離,|BC|為圓上點到已知直線的最小距離,而|AC|-|BC|等于圓的直徑,由圓的半徑即可求出直徑,即為最大距離與最小距離之差8
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知兩定點
,動點
滿足
,則
點的軌跡方程為__________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)(1)一個圓與
軸相切,圓心在直線
上,且被直線
所截得的弦長為
,求此圓方程。
(2)已知圓
,直線
,求與圓
相切,且與直線
垂直的直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知圓心在x軸上,半徑是5且以A(5,4)為中點的弦長是2
,則這個圓的方程是( )
A.(x-3)2+y2=25 | B.(x-3)2+y2=25或(x-7)2+y2=25 |
C.(x±3)2+y2=25 | D.(x+3)2+y2=25或(x+7)2+y2=25 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
方程為:
(1)直線
過點
且與圓
交于
兩點,若
,求直線
的方程;
(2)過圓
上一動點
作平行于
軸的直線
,設(shè)
與
軸交點為
,若
向量
,求動點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知圓
直線
下面四個命題
①對任意實數(shù)
和
直線
和圓
相切
②對任意實數(shù)
和
直線
和圓
有公共點
③對任意實數(shù)
必存在實數(shù)
使得直線
和圓
相切
④對任意實數(shù)
必存在實數(shù)
使得直線
和圓
相切
其中正確的命題有_____________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知圓C的圓必是拋物線
的焦點。直線4x-3y-3=0與圓C相交于A,B兩點,且|AB|=8,則圓C的方程為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若直線4x-3y-2=0與圓x
2+y
2-2ax+4y+a
2-12=0總有兩個不同交點,則a的取值范圍是
A.-3<a<7 | B.-6<a<4 |
C.-7<a<3 | D.-21<a<19 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知點A(-1,0)、點B(2,0),動點C滿足
,則點C與點P(1,4)的中點M的軌跡方程為
.
查看答案和解析>>