某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),甲產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,乙產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資的單位:萬(wàn)元).

(Ⅰ)分別將甲、乙兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(Ⅱ)該企業(yè)籌集了100萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,問(wèn):怎樣分配這100萬(wàn)元資金,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元?
分析:(1)根據(jù)甲產(chǎn)品的利潤(rùn)與投資成正比,過(guò)(1.8,0.45),可得甲的函數(shù)關(guān)系式;乙產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,過(guò)點(diǎn)(4,6),可得乙的函數(shù)關(guān)系式;
(2)設(shè)應(yīng)給乙投資x萬(wàn)元,則給甲投資(100-x)萬(wàn)元,從而可得函數(shù)關(guān)系式,求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求得最大利潤(rùn).
解答:解:(1)設(shè)投資x萬(wàn)元,利潤(rùn)y萬(wàn)元,則甲產(chǎn)品的利潤(rùn)與投資成正比,過(guò)(1.8,0.45),故甲的函數(shù)關(guān)系式為y=
1
4
x
;
 乙產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,設(shè)方程為y=k
x
,因?yàn)檫^(guò)點(diǎn)(4,6),
所以k=3,故乙的函數(shù)關(guān)系式為 y=3
x
;
(2)設(shè)應(yīng)給乙投資x萬(wàn)元,則給甲投資(100-x)萬(wàn)元
y=
1
4
(100-x)+3
x
(0≤x≤100)

求導(dǎo)函數(shù),
y′=-
1
4
+
3
2
x
=0
,∴x=36
∴函數(shù)在(0,36)上,y′>0,函數(shù)單調(diào)增,(36,100)上,y′<0,函數(shù)單調(diào)減,
∴x=36時(shí),函數(shù)取得極大值,且為最大值,ymax=34
答:應(yīng)投資36萬(wàn)元,最大利潤(rùn)34萬(wàn)元.
點(diǎn)評(píng):本題考查函數(shù)模型的構(gòu)建,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,單峰函數(shù)極值就是最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料4噸、B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料2噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元、每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)20噸、B原料不超過(guò)18噸,求該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)可獲得的最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸.那么該企業(yè)可獲得最大利潤(rùn)是
27萬(wàn)元
27萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)生產(chǎn)甲.乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷售每噸甲產(chǎn)品可獲得利潤(rùn)6萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸.求甲乙兩種產(chǎn)品各生產(chǎn)多少噸時(shí),該企業(yè)可獲得最大利潤(rùn),并求出最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸、B原料2噸;生產(chǎn)每噸,乙產(chǎn)品要用A原料1噸、B原料3噸.銷售每噸甲產(chǎn)品可獲得利潤(rùn)1萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元,該企業(yè)在某個(gè)生產(chǎn)周期內(nèi)甲產(chǎn)品至少生產(chǎn)1噸,乙產(chǎn)品至少生產(chǎn)2噸,消耗A原料不超過(guò)1 3噸,消耗B原料不超過(guò)1 8噸,那么該企業(yè)在這個(gè)生產(chǎn)周期內(nèi)獲得最大利潤(rùn)時(shí)甲產(chǎn)品的產(chǎn)量應(yīng)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案