【題目】已知A、B、C是圓O上的三個(gè)點(diǎn),CO的延長(zhǎng)線與線段BA的延長(zhǎng)線交于圓外一點(diǎn).若 ,其中m,n∈R.則m+n的取值范圍是( )
A.(0,1)
B.(﹣1,0)
C.(1,+∞)
D.(﹣∞,﹣1)
【答案】B
【解析】解:∵|OC|=|OB|=|OA|, ,
∴1=m2+n2+2mncos∠AOB
當(dāng)∠AOB=60°時(shí),m2+n2+mn=1,m<0,n>0,即(m+n)2﹣mn=1,即(m+n)2=1+mn<1,
所以(m+n)2<1,
∴﹣1<m+n<1,當(dāng) , 趨近射線OD,
由平行四邊形法則 = + =m +n ,此時(shí)顯然m<0,n>0,且|m|>|n|,
∴m+n<0,所以m+n的取值范圍(﹣1,0).
故選B.
【考點(diǎn)精析】利用平面向量的基本定理及其意義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果、是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)、,使.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a4=6,a6=10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}各項(xiàng)均為正數(shù),其前n項(xiàng)和Tn , 若b3=a3 , T2=3,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) f(x)=2x﹣ 的定義域?yàn)椋?,1](a為實(shí)數(shù)).
(Ⅰ)當(dāng)a=﹣1時(shí),求函數(shù)y=f(x)的值域;
(Ⅱ)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;
(Ⅲ)求函數(shù)y=f(x)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 滿足Sn=2an﹣1,n∈N*.?dāng)?shù)列{bn}滿足nbn+1﹣(n+1)bn=n(n+1),n∈N*,且b1=1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=an ,數(shù)列{cn}的前n項(xiàng)和為Tn , 對(duì)任意的n∈N*,都有Tn<nSn﹣a,求實(shí)數(shù)a的取值范圍;
(3)是否存在正整數(shù)m,n使b1 , am , bn(n>1)成等差數(shù)列,若存在,求出所有滿足條件的m,n,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ∥ ,求x,y之間的關(guān)系式;
(2)滿足(1)的同時(shí)又有 ⊥ ,求x,y的值以及四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA是南北方向的一條公路,OB是北偏東45°方向的一條公路,某風(fēng)景區(qū)的一段邊界為曲線C.為方便游客光,擬過曲線C上的某點(diǎn)分別修建與公路OA,OB垂直的兩條道路PM,PN,且PM,PN的造價(jià)分別為5萬元/百米,40萬元/百米,建立如圖所示的直角坐標(biāo)系xoy,則曲線符合函數(shù)y=x+ (1≤x≤9)模型,設(shè)PM=x,修建兩條道路PM,PN的總造價(jià)為f(x)萬元,題中所涉及的長(zhǎng)度單位均為百米.
(1)求f(x)解析式;
(2)當(dāng)x為多少時(shí),總造價(jià)f(x)最低?并求出最低造價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(﹣1,0),B(1,1),C(2,0),點(diǎn)P是平面直角坐標(biāo)系xOy上一點(diǎn),且 =m (m,n∈R),
(1)若m=1,且 ∥ ,試求實(shí)數(shù)n的值;
(2)若點(diǎn)P在△ABC三邊圍成的區(qū)域(含邊界)上,求m+3n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購(gòu)進(jìn)16枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.
(i)若花店一天購(gòu)進(jìn)16枝玫瑰花,X表示當(dāng)天的利潤(rùn)(單位:元),求X的分布列,數(shù)學(xué)期望及方差;
(ii)若花店計(jì)劃一天購(gòu)進(jìn)16枝或17枝玫瑰花,你認(rèn)為應(yīng)購(gòu)進(jìn)16枝還是17枝?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com