如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點D,B,連結OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.
精英家教網(wǎng)
解析(1)由 
y=x2
y=-x2+2ax
解得
x=0
y=0
x=a
y=a2

∴O(0,0),A(a,a2).又由已知得B(t,-t2+2at),D(t,t2),
∴S=
t0
(-x2+2ax)dx-
1
2
t×t2+
1
2
(-t2+2at-t2)×(a-t)
=(-
1
3
x3+ax2)|
 t0
-
1
2
t3+(-t2+at)×(a-t)=-
1
3
t3+at2-
1
2
t3+t3-2at2+a2t=
1
6
t3-at2+a2t.
∴S=f(t)=
1
6
t3-at2+a2t(0<t≤1).
(2)f′(t)=
1
2
t2-2at+a2,令f′(t)=0,即
1
2
t2-2at+a2=0.解得t=(2-
2
)a或t=(2+
2
)a.
∵0<t≤1,a>1,∴t=(2+
2
)a應舍去.
若(2-
2
)a≥1,即a≥
1
2-
2
=
2+
2
2
時,
∵0<t≤1,∴f′(t)≥0.
∴f(t)在區(qū)間(0,1]上單調遞增,S的最大值是f(1)=a2-a+
1
6

若(2-
2
)a<1,即1<a<
2+
2
2
時,當0<t<(2-
2
)a時f′(t)>0.當(2-
2
)a<t≤1時,f′(t)<0.
∴f(t)在區(qū)間(0,(2-
2
)a]上單調遞增,在區(qū)間((2-
2
)a,1]上單調遞減.
∴f(t)的最大值是f((2-
2
)a)=
1
6
[(2-
2
)a]3-a[(2-
2
)a]2+a2(2-
2
)a=
2
2
-2
3
a3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=t(0<t<1)與曲線C1,C2分別交于B,D.
(Ⅰ)寫出四邊形ABOD的面積S與t的函數(shù)關系式S=f(t);
(Ⅱ)討論f(t)的單調性,并求f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=
1
3
與曲線C1,C2分別交于B,D.則四邊形ABOD的面積S為(  )
A、
4
9
B、
3
C、2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點D,B,連結OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)如圖,已知曲線c1
x2
a2
+
y2
b 2
=1(b>a>0,y≥0)
與拋物線c2:x2=2py(p>0)的交點分別為A、B,曲線c1和拋物線c2在點A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當
b
a
為定值時,求證k1•k2為定值(與p無關),并求出這個定值;
(Ⅱ)若直線l2與y軸的交點為D(0,-2),當a2+b2取得最小值9時,求曲線c1和c2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點,曲線C2在A,B處的切線相交于點M.
(1)當MA⊥MB時,求直線l的方程;
(2)試問在y軸上是否存在兩個定點T1,T2,當直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案