【題目】下列說(shuō)法中,正確的有_______.(寫出所有正確說(shuō)法的序號(hào))

①在中,若,則;

②在中,若,則是銳角三角形;

③在中,若,則;

④若是等差數(shù)列,其前項(xiàng)和為,則三點(diǎn)共線;

⑤等比數(shù)列的前項(xiàng)和為,若對(duì)任意的,點(diǎn)均在函數(shù)(,均為常數(shù))的圖象上,則的值為.

【答案】①③④⑤

【解析】

根據(jù)正弦定理及邊角關(guān)系可判斷①;根據(jù)正弦定理及余弦定理,可判斷角為銳角,但不能判斷角和角的情況,因而②錯(cuò)誤;結(jié)合正弦定理及余弦定理可判斷角為鈍角,結(jié)合正切的和角公式,變形后即可判斷③;根據(jù)等差數(shù)列前n項(xiàng)和的性質(zhì),結(jié)合兩點(diǎn)間的斜率公式,可判斷④;將點(diǎn)帶入函數(shù)解析式,結(jié)合求得通項(xiàng)公式,結(jié)合等比數(shù)列的定義即可求得.

對(duì)于①,在中,若,則由大角對(duì)大邊可知.設(shè)外接圓半徑為,由正弦定理可知,.所以①正確;

對(duì)于②,在中,若,由正弦定理可得,可判定角為銳角.但當(dāng)角或角為鈍角時(shí)也成立,因而不能說(shuō)明是銳角三角形,所以②錯(cuò)誤.

對(duì)于③,在中,若,由正弦定理可知,,所以角為鈍角.由正切和角公式可知,,

所以

所以

因?yàn)榻?/span>為鈍角,所以角和角必為銳角,因而,所以,所以③正確;

對(duì)于④,是等差數(shù)列,其前項(xiàng)和為,則由等差數(shù)列前項(xiàng)和公式可得,.所以,,

由兩點(diǎn)間斜率公式可得

可知三點(diǎn)共線,所以④正確;

對(duì)于⑤,點(diǎn)均在函數(shù)(,均為常數(shù))的圖象上.

所以當(dāng)時(shí),

當(dāng)時(shí),

因?yàn)?/span>為等比數(shù)列,則首項(xiàng)也滿足通項(xiàng)公式,所以

解得,所以⑤正確.

綜上可知,正確的為①③④⑤

故答案為: ①③④⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),霧霾日趨嚴(yán)重,霧霾的工作、生活受到了嚴(yán)重的影響,如何改善空氣質(zhì)量已成為當(dāng)今的熱點(diǎn)問(wèn)題,某空氣凈化器制造廠,決定投入生產(chǎn)某型號(hào)的空氣凈化器,根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律,每生產(chǎn)該型號(hào)空氣凈化器(百臺(tái)),其總成本為(萬(wàn)元),其中固定成本為12萬(wàn)元,并且每生產(chǎn)1百臺(tái)的生產(chǎn)成本為10萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷售收入(萬(wàn)元)滿足,假定該產(chǎn)品銷售平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計(jì)規(guī)律,請(qǐng)完成下列問(wèn)題:

(1)求利潤(rùn)函數(shù)的解析式(利潤(rùn)=銷售收入-總成本);

(2)工廠生產(chǎn)多少百臺(tái)產(chǎn)品時(shí),可使利潤(rùn)最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】籃球場(chǎng)上有5個(gè)人在練球,其戰(zhàn)術(shù)是由甲開始發(fā)球(第1次傳球),經(jīng)過(guò)6次傳球跑動(dòng)后(中途每人的傳接球機(jī)會(huì)均等),回到甲,由甲投3分球,其不同的傳球方式有( )種.

A. 4 100 B. 1 024 C. 976 D. 820

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其圖象的一個(gè)對(duì)稱中心是,將的圖象向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象.

1)求函數(shù)的解析式;

2)若對(duì)任意,當(dāng)時(shí),都有,求實(shí)數(shù)的最大值;

3)若對(duì)任意實(shí)數(shù)上與直線的交點(diǎn)個(gè)數(shù)不少于6個(gè)且不多于10個(gè),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )

A. 60π B. 36π C. 24π D. 12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在五面體中,四邊形為菱形,且,的中點(diǎn).

(1)求證:平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:

并對(duì)不同年齡層的市民對(duì)這款電視機(jī)的購(gòu)買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:

(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;

(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購(gòu)買該款電視機(jī)”與“市民的年齡”有關(guān);

(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在[0,4)和[4,20]的電視機(jī)中抽取5臺(tái),再?gòu)倪@5臺(tái)中隨機(jī)抽取2臺(tái)進(jìn)行配件檢測(cè),求被抽取的2臺(tái)電視機(jī)的使用時(shí)間都在[4,20]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖放置的邊長(zhǎng)為1的正方形沿軸順時(shí)針滾動(dòng)一周,設(shè)頂點(diǎn)的運(yùn)動(dòng)軌跡與軸所圍區(qū)域?yàn)?/span>,若在平面區(qū)域內(nèi)任意取一點(diǎn),則所取的點(diǎn)恰好落在區(qū)域內(nèi)部的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分,1小問(wèn)7分,2小問(wèn)5分

設(shè)函數(shù)

1處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;

2上為減函數(shù),求的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案