【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,

(1)過作截面與線段交于點,使得平面,試確定點的位置,并予以證明;

(2)在(1)的條件下,求直線與平面所成角的正弦值.

【答案】(1)當為線段的中點時,使得平面.(2)

【解析】

試題分析:(1)為線段的中點時,平面連結AC交BD于M,連結MN.利用中位線定理即可證明 ,于是平面

(2)通過線面關系證得 ,.分別以,,的方向為,軸的正方向,建立空間直角坐標系,用向量法求解即可.

試題解析:(1)當為線段的中點時,使得平面

證法如下:

連接,設,

∵四邊形為矩形,

的中點,

又∵的中點,

的中位線,

,

平面,平面,

平面,故的中點時,使得平面

(2)過分別與,交于,

因為的中點,所以,分別為,的中點,

均為等邊三角形,且,

,連接,則得

, ,,

,

∴四邊形為等腰梯形.

的中點,連接,則,

又∵,,

平面,

點作,則,

,

分別以,,的方向為,,軸的正方向,建立空間直角坐標系,不妨設,則由條件可得:,,

是平面的法向量,

所以可取

,可得

∴直線與平面所成角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)貿(mào)公司按每擔200元的價格收購某農(nóng)產(chǎn)品,并按每100元納稅10元(又稱征稅率為10個百分點)進行納稅,計劃可收購萬擔,政府為了鼓勵收購公司多收購這種農(nóng)產(chǎn)品,決定將征稅降低個百分點,預測收購量可增加個百分點.

1)寫出稅收(萬元)與的函數(shù)關系式;

2)要使此項稅收在稅率調整后不少于原計劃稅收的,試確定的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一2班學生每周用于數(shù)學學習的時間(單位:)與數(shù)學成績(單位:分)之間有如下數(shù)據(jù):

24

15

23

19

16

11

20

16

17

13

92

79

97

89

64

47

83

68

71

59

某同學每周用于數(shù)學學習的時間為18小時,試預測該生數(shù)學成績.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)若在區(qū)間上有極值,求實數(shù)的取值范圍;

(Ⅱ)若有唯一的零點,試求的值.(注:為取整函數(shù),表示不超過的最大整數(shù),如;以下數(shù)據(jù)供參考:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3x2axax∈R,其中a>0.

(1)求函數(shù)f(x)的單調區(qū)間;

(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),點在曲線上,且曲線在點處的切線與直線垂直.

(1)求,的值;

(2)如果當時,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價為6400元,一塊長為米的玻璃造價為元.假設所有立柱的粗細都忽略不計,且不考慮其他因素,記總造價為元(總造價=立柱造價+玻璃造價).

(1)求關于的函數(shù)關系式;

(2)當時,怎樣設計能使總造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=﹣sin2x+sinxcosx+,x∈[0,]

(1)求函數(shù)f(x)的值域;

(2)若f()=,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子里有完全相同的3只紅球和4只黑球,今從袋子里隨機取球.

)若有放回地取3次,每次取一個球,求取出2個紅球1個黑球的概率;

)若無放回地取3次,每次取一個球,若取出每只紅球得2分,取出每只黑球得1分,求得分的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案