【題目】已知函數(shù) .

(Ⅰ)若在區(qū)間上有極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)若有唯一的零點(diǎn),試求的值.(注:為取整函數(shù),表示不超過的最大整數(shù),如;以下數(shù)據(jù)供參考:

【答案】(Ⅰ);(Ⅱ).

【解析】

試題分析:(1)求出f(x)的導(dǎo)數(shù),令h(x)=2x3﹣ax﹣2,x∈(0,+∞),求出導(dǎo)數(shù),討論a的符號(hào),判斷單調(diào)性,即可得到所求a的范圍;(2)由(1)可知:f(1)=3知x(0,1)時(shí),f(x)0,則x01,討論f(x)在x1的單調(diào)性,再由零點(diǎn)的定義和極值點(diǎn)的定義,可得x0的方程,構(gòu)造函數(shù),判斷單調(diào)性,由零點(diǎn)存在性定理知 t(2)<0,t(3)>0,即可得到所求值.

試題解析:

(Ⅰ)函數(shù) 的定義域?yàn)?/span>

,則,

當(dāng)時(shí),恒成立,上為增函數(shù),

函數(shù)內(nèi)有一個(gè)零點(diǎn),

且當(dāng)時(shí),時(shí),,

所以上單調(diào)遞減,在上單調(diào)遞增,

所以在區(qū)間內(nèi)有極小值.

當(dāng)時(shí),,即時(shí),恒成立,

函數(shù)單調(diào)遞減,此時(shí)函數(shù)無極值,

綜上可得:在區(qū)間內(nèi)有極值時(shí)實(shí)數(shù)的取值范圍是,

(Ⅱ)①當(dāng)時(shí),,不滿足定義域,不存在.

②當(dāng)時(shí),由(Ⅰ)知:若有唯一的零點(diǎn)為極小值點(diǎn),

所以

③當(dāng)時(shí),函數(shù)的定義域?yàn)?/span>,

由(Ⅰ)可知:時(shí),

在區(qū)間上只有一個(gè)極小值點(diǎn)記為,

時(shí),函數(shù)單調(diào)遞減,

時(shí),,函數(shù)單調(diào)遞增,

由題意可知:即為

消去可得:,

,則在區(qū)間上單調(diào)遞增,

,

由零點(diǎn)存在性定理知

綜上可得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了引導(dǎo)居民合理用電,國(guó)家決定實(shí)行合理的階梯電價(jià),居民用電原則上以住宅為單位(一套住宅為一戶).

階梯級(jí)別

第一階梯

第二階梯

第三階梯

月用電范圍(度)

(0,210]

(210,400]

某市隨機(jī)抽取10戶同一個(gè)月的用電情況,得到統(tǒng)計(jì)表如下:

居民用電戶編號(hào)

1

2

3

4

5

6

7

8

9

10

用電量(度)

53

86

90

124

132

200

215

225

300

410

若規(guī)定第一階梯電價(jià)每度0.5元,第二階梯超出第一階梯的部分每度0.6元,第三階梯超出第二階梯的部分每度0.8元,試計(jì)算A居民用電戶用電410度時(shí)應(yīng)電費(fèi)多少元?

現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯電量的戶數(shù)的分布列與期望;

以表中抽到的10戶作為樣本估計(jì)全市的居民用電,現(xiàn)從全市中依次抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人組成一個(gè)小組參加電視臺(tái)舉辦的聽曲猜歌名活動(dòng),在每一輪活動(dòng)中,依次播放三首樂曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜錯(cuò),則活動(dòng)立即結(jié)束;若三人均猜對(duì),則該小組進(jìn)入下一輪,該小組最多參加三輪活動(dòng).已知每一輪甲猜對(duì)歌名的概率是,乙猜對(duì)歌名的概率是,丙猜對(duì)歌名的概率是,甲、乙、丙猜對(duì)與否互不影響.

(I)求該小組未能進(jìn)入第二輪的概率;

(Ⅱ)記乙猜歌曲的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知矩形的面積為100,則這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),矩形的周長(zhǎng)最短?最短周長(zhǎng)是多少?

2)已知矩形的周長(zhǎng)為36,則這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),它的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)試討論函數(shù)的單調(diào)性;

2)若,且函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)雙曲線的左,右焦點(diǎn)分別為F1,F2,過F1的直線l交雙曲線左支于AB兩點(diǎn),則|BF2|+|AF2|的最小值為(  )

A. B. 11

C. 12 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,

(1)過作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;

(2)在(1)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)判斷函數(shù)的單調(diào)性;

(2)當(dāng)上的最小值是時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型高端制造公司為響應(yīng)《中國(guó)制造2025》中提出的堅(jiān)持“創(chuàng)新驅(qū)動(dòng)、質(zhì)量為先、綠色發(fā)展、結(jié)構(gòu)優(yōu)化、人才為本”的基本方針,準(zhǔn)備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費(fèi)用(百萬元)和產(chǎn)品銷量(萬臺(tái))的具體數(shù)據(jù):

(1)根據(jù)數(shù)據(jù)可知之間存在線性相關(guān)關(guān)系

(i)求出關(guān)于的線性回歸方程(系數(shù)精確到);

(ii)若2018年6月份研發(fā)投人為25百萬元,根據(jù)所求的線性回歸方程估計(jì)當(dāng)月產(chǎn)品的銷量;

(2)公司在2017年年終總結(jié)時(shí)準(zhǔn)備從該年8~12月份這5個(gè)月中抽取3個(gè)月的數(shù)據(jù)進(jìn)行重點(diǎn)分析,求沒有抽到9月份數(shù)據(jù)的概率.

參考數(shù)據(jù): .

參考公式:對(duì)于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,.

查看答案和解析>>

同步練習(xí)冊(cè)答案