求到兩個定點的距離之比等于2的點的軌跡方程。
解:設(shè)為所求軌跡上任一點,則有
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
給定橢圓,稱圓心在坐標(biāo)原點,半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個焦點為,其短軸上的一個端點到距離為
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過點的直線與橢圓C只有一個公共點,且截橢圓C的“伴隨圓”所得的弦長為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動點Q作直線,使得與橢圓C都只有一個公共點,試判斷直線的斜率之積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在拋物線上有一點,它到焦點的距離是20,則點的坐標(biāo)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓的焦點在x軸上,且離心率e=,則m的值為(  )
A.B.2C.-D.±

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線C:,直線l:y=2x+b,那么曲C與直線l相切的充要條件是
A.b=B.b=-C.b=5D.b=或b=-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的長軸長為4,焦距為2,F(xiàn)1、F2分別為橢圓的左、右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點
(1)求橢圓的標(biāo)準(zhǔn)方程和動點的軌跡的方程。
(2)過橢圓的右焦點作斜率為1的直線交橢圓于A、B兩點,求的面積。
(3)設(shè)軌跡軸交于點,不同的兩點在軌跡上,
滿足求證:直線恒過軸上的定點。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
動點與點的距離和它到直線的距離相等,記點的軌跡為曲線.圓
的圓心是曲線上的動點, 圓軸交于兩點,且.
(1)求曲線的方程;
(2)設(shè)點2,若點到點的最短距離為,試判斷直線與圓的位置關(guān)系,
并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于頂點在原點的拋物線,給出下列條件:
①焦點在y軸上、诮裹c在x軸上、蹝佄锞上橫坐標(biāo)為1的點到焦點的距離等于6、軖佄锞的通徑的長為5
⑤由原點向過焦點的某條直線作垂線,垂足坐標(biāo)為(2,1)
能使這個拋物線方程為y2=10x的條件是________.(要求填寫合適條件的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(1,0)的直線與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與其右焦點關(guān)于直線l對稱,試求直線l與橢圓C的方程  

查看答案和解析>>

同步練習(xí)冊答案