已知函數(shù)f(x)=
x+a
x2+2
(x∈R).
(1)寫(xiě)出函數(shù)y=f(x)的奇偶性;
(2)當(dāng)x>0時(shí),是否存實(shí)數(shù)a,使v=f(x)的圖象在函數(shù)g(x)=
2
x
圖象的下方,若存在,求α的取值范圍;若不存在,說(shuō)明理由.
考點(diǎn):函數(shù)恒成立問(wèn)題,函數(shù)奇偶性的判斷
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)當(dāng)a=0時(shí),f(x)=
x
x2+2
是奇函數(shù); 當(dāng)a≠0時(shí),函數(shù)f(x)=
x+a
x2+2
(x∈R),是非奇非偶函數(shù). 
(2)若y=f(x)的圖象在函數(shù)g(x)=
2
x
圖象的下方,則
x+a
x2+2
2
x
,化簡(jiǎn)得a<
4
x
+x恒成立,在求函數(shù)的最值.
解答: 解:(1)因?yàn)閥=f(x)的定義域?yàn)镽,所以:
當(dāng)a=0時(shí),f(x)=
x
x2+2
是奇函數(shù);        
當(dāng)a≠0時(shí),函數(shù)f(x)=
x+a
x2+2
(x∈R).是非奇非偶函數(shù). 
(2)當(dāng)x>0時(shí),
若y=f(x)的圖象在函數(shù)g(x)=
2
x
圖象的下方,則
x+a
x2+2
2
x

化簡(jiǎn)得a<
4
x
+x恒成立,
因?yàn)閤>0,∴x+
4
x
≥2
x
4
x
=4

(x+
4
x
)≥4

所以,當(dāng)a<4時(shí),y=f(x)的圖象都在函數(shù)g(x)=
2
x
圖象的下方.
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性,同時(shí)考查函數(shù)恒成立的問(wèn)題,主要進(jìn)行函數(shù)式子的恒等轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)集P={x|x=2k-1,k∈Z},Q={x|x=4k-1,k∈Z},則P、Q之間的關(guān)系為( 。
A、P=QB、P⊆Q
C、P?QD、P與Q不存在包含關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中:
①函數(shù)y=
6-x2
|x+3|-3
為奇函數(shù);
②奇函數(shù)的圖象一定通過(guò)直角坐標(biāo)系的原點(diǎn);
③函數(shù)y=2 
1
x
的值域是(0,+∞);
④若函數(shù)f(2x)的定義域?yàn)閇1,2],則函數(shù)f(2x)的定義域?yàn)閇1,2];
⑤函數(shù)y=lg(-x2+2x)的單調(diào)遞增區(qū)間是(0,1].
其中正確的序號(hào)是
 
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題為“p或q”的形式的是( 。
A、
5
>2
B、2是4和6的公約數(shù)
C、Φ≠{0}
D、2≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,過(guò)原點(diǎn)與x軸不重合的直線(xiàn)與橢圓交于A,B二點(diǎn),且|AF|+|BF|=2
2
,|AB|的最小值為2.
(1)求橢圓E的方程;
(2)若圓x2+y2=
2
3
的任意一條切線(xiàn)l與橢圓E相交于P,Q兩點(diǎn),
OP
OQ
是否為定值?若是,求這個(gè)定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(2,3)的直線(xiàn)l與圓x2+y2=25相交于A,B兩點(diǎn),當(dāng)弦AB最短時(shí),直線(xiàn)l的方程式是( 。
A、2x+3y-13=0
B、2x-3y+5=0
C、3x-2y=0
D、3x+2y-12=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱柱A1B1C1D1-ABCD中,底面ABCD為直角梯形,AB∥CD,∠ABC=90°,BC1=B1C,
(1)求證:平面DD1C1C⊥平面ABCD;
(2)設(shè)點(diǎn)E,F(xiàn)分別是棱AD,CC1中點(diǎn),求證:EF∥平面C1AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的對(duì)稱(chēng)中心為原點(diǎn)O,焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)(1,
3
2
)在該橢圓上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F1的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),若△AF2B的內(nèi)切圓半徑為
3
2
7
,求以F2為圓心且與直線(xiàn)l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=
1
2
PA,點(diǎn)O,D分別是AC,PC的中點(diǎn),OP⊥底面ABC.
(1)求證OD∥平面PAB;
(2)求直線(xiàn)OD與平面PBC所成角的正弦值的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案