【題目】設函數, .
(1) 關于的方程在區(qū)間上有解,求的取值范圍;
(2) 當時, 恒成立,求實數的取值范圍.
科目:高中數學 來源: 題型:
【題目】設是一個非空集合, 是定義在上的一個運算.如果同時滿足下述四個條件:
(1)對于,都有;
(2)對于,都有;
(3)對于,使得;
(4)對于,使得(注:“”同(iii)中的“”).
則稱關于運算構成一個群.現(xiàn)給出下列集合和運算:
①是整數集合, 為加法;②是奇數集合, 為乘法;③是平面向量集合, 為數量積運算;④是非零復數集合, 為乘法. 其中關于運算構成群的序號是___________(將你認為正確的序號都寫上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列的前n項和為, , ,數列滿足: , , ,數列的前n項和為
(1)求數列的通項公式及前n項和;
(2)求數列的通項公式及前n項和;
(3)記集合,若M的子集個數為16,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確命題的個數是( )
①若2b=a+c,則a,b,c成等差數列;
②“a,b,c成等比數列”的充要條件是“b2=ac”;
③若數列{an2}是等比數列,則數列{an}也是等比數列;
④若| |=| |,則 = .
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= 為偶函數
(1)求實數a的值;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判斷λ與E的關系;
(3)當x∈[ , ](m>0,n>0)時,若函數f(x)的值域[2﹣3m,2﹣3n],求實數m,n值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式.
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com