函數(shù)f(x)=(
1
2
)
x
與函數(shù)g(x)=log
1
2
|x|在區(qū)間(-∞,0)上的單調(diào)性為( 。
A、都是增函數(shù)
B、都是減函數(shù)
C、f(x)是增函數(shù),g(x)是減函數(shù)
D、f(x)是減函數(shù),g(x)是增函數(shù)
分析:函數(shù)g(x)=log
1
2
|x|為偶函數(shù),圖象關(guān)于y軸對稱,在區(qū)間(0,+∞)上為減函數(shù),可判在(-∞,0)上的單調(diào)性.
解答:解:f(x)=(
1
2
)
x
在x∈(-∞,0)上為減函數(shù),g(x)=loglog
1
2
(-x)在(-∞,0)上為增函數(shù).
故選D
點(diǎn)評:本題考查函數(shù)的單調(diào)性問題,屬基本題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•威海一模)已知函數(shù)f(x)=
12
[tln(x+2)-ln(x-2)],且f(x)≥f(4)恒成立.
(1)求t的值;
(2)求x為何值時,f(x)在[3,7]上取得最大值;
(3)設(shè)F(x)=aln(x-1)-f(x),若F(x)是單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
)
x
-7,x<0
x
,x≥0
,若f(x)=1則實數(shù)x的取值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
•(
1
4
x-1+a•(
1
2
x-a+2
(1)若a=4,解不等式f(x)>0;
(2)若方程f(x)=0有負(fù)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(
1
2
) x(x≤0)
2cosx(0<x<π)
,若f(f(x0))=2,則x0=
 

查看答案和解析>>

同步練習(xí)冊答案