【題目】選修4﹣1:平面幾何
如圖AB是⊙O的直徑,弦BD,CA的延長(zhǎng)線相交于點(diǎn)E,EF垂直BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:∠DEA=∠DFA;
(2)若∠EBA=30°,EF= ,EA=2AC,求AF的長(zhǎng).

【答案】
(1)證明:連接AD,BC.

因?yàn)锳B是⊙O的直徑,所以∠ADB=∠ACB=∠EFA=90°,

故A,D,E,F(xiàn)四點(diǎn)共圓,

∴∠DEA=∠DFA;


(2)解:在直角△EFA和直角△BCA中,∠EAF=∠CAB,

所以△EFA∽△BCA,所以

所以AF×AB=AC×AE

設(shè)AF=a,則AB=3﹣a,所以a(3﹣a)= ,所以a2﹣2a+1=0,解得a=1

所以AF的長(zhǎng)為1.


【解析】(1)連接AD,BC,證明A,D,E,F(xiàn)四點(diǎn)共圓,可得結(jié)論;(2)證明△EFA∽△BCA,可得 ,所以AF×AB=AC×AE,從而可求AF的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】常州地鐵項(xiàng)目正在緊張建設(shè)中,通車(chē)后將給市民出行帶來(lái)便利.已知某條線路通車(chē)后,地鐵的發(fā)車(chē)時(shí)間間隔 (單位:分鐘)滿足,經(jīng)測(cè)算,地鐵載客量與發(fā)車(chē)時(shí)間間隔相關(guān),當(dāng)時(shí)地鐵為滿載狀態(tài),載客量為1200人,當(dāng)時(shí),載客量會(huì)減少,減少的人數(shù)與的平方成正比,且發(fā)車(chē)時(shí)間間隔為2分鐘時(shí)的載客量為560人,記地鐵載客量為.

⑴ 求的表達(dá)式,并求當(dāng)發(fā)車(chē)時(shí)間間隔為6分鐘時(shí),地鐵的載客量;

⑵ 若該線路每分鐘的凈收益為(元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),該線路每分鐘的凈收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)若處取得極值,求實(shí)數(shù)的值.

)求函數(shù)的單調(diào)區(qū)間.

)若上沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是關(guān)于的偶函數(shù).

(1)求的值;

(2)求證: 對(duì)任意實(shí)數(shù),函數(shù)的圖象與函數(shù)的圖象最多只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明一家訂閱的晚報(bào)會(huì)在下午5:30~6:30之間的任何一個(gè)時(shí)間隨機(jī)地被送到,小明一家人在下午6:00~7:00之間的任何一個(gè)時(shí)間隨機(jī)地開(kāi)始晚餐.

(1)你認(rèn)為晚報(bào)在晚餐開(kāi)始之前被送到和晚餐開(kāi)始之后被送到哪一種可能性更大?

(2)晚報(bào)在晚餐開(kāi)始之前被送到的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線方程為x2=2py(p>0),其焦點(diǎn)為F,點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)焦點(diǎn)F作斜率為k(k≠0)的直線與拋物線交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作拋物線的兩條切線,設(shè)兩條切線交于點(diǎn)M.
(1)求 ;
(2)設(shè)直線MF與拋物線交于C,D兩點(diǎn),且四邊形ACBD的面積為 ,求直線AB的斜率k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(a為常數(shù))的圖象與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的對(duì)角線相交于點(diǎn),將沿對(duì)角線折起,使得平面平面(如圖),則下列命題中正確的是( )

A. 直線直線,且直線直線

B. 直線平面,且直線平面

C. 平面平面,且平面平面

D. 平面平面,且平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且a≠1,若函數(shù)f(x)=loga[ax2﹣(2﹣a)x+3]在[ ,2]上是增函數(shù),則a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案