精英家教網 > 高中數學 > 題目詳情

【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數學、英語,為必考科目:“1”表示從物理、歷史中任選一門;“2”則是從生物、化學、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學生(其中女生900人)中,采用分層抽樣的方法抽取名學生進行調查.

(1)已知抽取的名學生中含男生110人,求的值及抽取到的女生人數;

(2)學校計劃在高二上學期開設選修中的“物理”和“歷史”兩個科目,為了了解學生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學生講行問卷調查(假定每名學生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據調查結果得到的列聯表,請將列聯表補充完整,并判斷是否有的把握認為選擇科目與性別有關?說明你的理由;

性別

選擇物理

選擇歷史

總計

男生

50

女生

30

總計

(3)在(2)的條件下,從抽取的選擇“物理”的學生中按分層抽樣抽取6人,再從這6名學生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.

參考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1),; (2)有的把握認為選擇科目與性別有關; (3).

【解析】

1)根據分層抽樣的特點,求出的值和抽取到的女生的人數.

2)補全列聯表,然后將相應的值代入到公式中,得到結果,然后做出判斷.

3)將所有情況列出,然后找到符合要求的情況,根據古典概型公式,求出概率.

(1)因為,所以,女生人數為.

(2)列聯表為:

性別

選擇物理

選擇歷史

總計

男生

60

50

110

女生

30

60

90

總計

90

110

200

的觀測值

所以有的把握認為選擇科目與性別有關.

(3)從90個選擇物理的學生中采用分層抽樣的方法抽6名,這6名學生中有4名男生,記為,,;2名女生記為,.

抽取2人所有的情況為、、、、、、、、、、、、,共15種,選取的2人中至少有1名女生情況的有、、、、、、,共9種,

故所求概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,若方程有且只有2個不相等的實數解,則實數k的取值范圍是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的三邊BC,CA,AB的中點分別是D(53),E(4,2),F(1,1).

1)求△ABC的邊AB所在直線的方程及點A的坐標;

2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的三邊BC,CA,AB的中點分別是D(53),E(4,2),F(1,1).

1)求△ABC的邊AB所在直線的方程及點A的坐標;

2)求△ABC的外接圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓,是圓M內一個定點,P是圓上任意一點,線段PN的垂直平分線l和半徑MP相交于點Q,當點P在圓M上運動時,點Q的軌跡為曲線E.

1)求曲線E的方程;

2)已知拋物線上,是否存在直線m與曲線E交于G,H,使得G,H中點F落在直線y2x上,并且與拋物線相切,若直線m存在,求出直線m的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從高一年級學生中隨機抽取名學生,將他們的期中考試數學成績(滿分分,成績均為不低于分的整數)分成六段:,…,后得到如圖的頻率分布直方圖.

(1)求圖中實數的值;

(2)若從數學成績在兩個分數段內的學生中隨機選取兩名學生,求這兩名學生的數學成績之差的絕對值不大于的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱柱中,,平面,.

(1)證明:.

(2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大型超市公司計劃在市新城區(qū)開設分店,為確定在新城區(qū)開設分店的個數,該公司對該市已開設分店的其他區(qū)的數據統(tǒng)計后得到下列信息(其中表示在該區(qū)開設分店的個數,表示這個分店的年收入之和):

分店個數(個)

2

3

4

5

6

年收入(萬元)

250

300

400

450

600

(Ⅰ)該公司經過初步判斷,可用線性回歸模型擬合的關系,求關于的回歸方程;

(Ⅱ)假設該公司每年在新城區(qū)獲得的總利潤(單位:萬元)與,之間的關系為,請根據(Ⅰ)中的線性回歸方程,估算該公司在新城區(qū)開設多少個分店時,才能使新城區(qū)每年每個分店的平均利潤最大.

參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為: ,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為響應低碳綠色出行,某市推出“新能源分時租賃汽車”,其中一款新能源分時租賃汽車,每次租車收費得標準由以下兩部分組成:(1)根據行駛里程數按1元/公里計費;(2)當租車時間不超過40分鐘時,按0.12元/分鐘計費;當租車時間超過40分鐘時,超出的部分按0.20元/分鐘計費;(3)租車時間不足1分鐘,按1分鐘計算.已知張先生從家里到公司的距離為15公里,每天租用該款汽車上下班各一次,且每次租車時間t20,60(單位:分鐘).由于堵車,紅綠燈等因素,每次路上租車時間t是一個隨即變量.現統(tǒng)計了他50次路上租車時間,整理后得到下表:

租車時間t(分鐘)

[20,30]

(30,40]

(40,50]

(50,60]

頻數

2

18

20

10

將上述租車時間的頻率視為概率.

(1)寫出張先生一次租車費用y(元)與租車時間t(分鐘)的函數關系式;

(2)公司規(guī)定,員工上下班可以免費乘坐公司接送車,若不乘坐公司接送車的每月(按22天計算)給800元車補.從經濟收入的角度分析,張先生上下班應該選擇公司接送車,還是租用該款新能源汽車?

查看答案和解析>>

同步練習冊答案