【題目】如圖,在四棱錐中,底面是菱形,平面平面,且,,為的中點,.
(1)求證:平面;
(2)求三棱錐的體積.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,交于點,連接,根據(jù)三角形中位線的性質(zhì)可得,再根據(jù)線面平行的判定可得結論成立.(2)在中由余弦定理得,于是.在平面內(nèi),作,交的延長線于,由條件可得平面,即為點到平面的距離,然后再結合求解可得所求.
(1)證明:連接,交于點,連接.
∵為的中點,為的中點,
∴為的中位線,
∴,且.
又平面,平面,
∴平面.
(2)在中,,,
由余弦定理得,
∴.
∴.
∵,且為的中點,
∴.
在中,.
在平面內(nèi),作,交的延長線于.
∵平面平面,平面平面,
∴平面.
即為點到平面的距離.
∵點為的中點,
∴點到平面的距離是長度的一半.
在中,,
∴.
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中記載了這樣的一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還”,其大意為:有一個人走了378里路,第一天健步行走,從第二天起其因腳痛每天走的路程為前一天的一半,走了6天后到達了目的地,問此人第三天走的路程里數(shù)為( )
A.192B.48C.24D.88
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.
(1)求橢圓的方程;
(2)設橢圓在左、右頂點分別為、,左焦點為,過的直線與交于、兩點(和均不在坐標軸上),直線、分別與軸交于點、,直線、分別與軸交于點、,求證:為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,且,,分別為棱,,的中點.
(1)證明:直線與共面;并求其所成角的余弦值;
(2)在棱上是否存在點,使得平面,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點、分別是橢圓的上、下頂點,以為直徑作圓,直線與橢圓交于、兩點,與圓交于、兩點.
(1)若直線的傾斜角為,求(為坐標原點)的面積;
(2)若點、分別在直線、上,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點;
(3)設若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為、,離心率為,點是橢圓上的一個動點,且面積的最大值為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于、兩點,過點作直線的垂線交圓:于另一點.若的面積為3,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com