【題目】已知函數(shù)
(1)若,求的極值;
(2)若,都有成立,求k的取值范圍.
【答案】(1)極小值為,無(wú)極大值;(2).
【解析】
(1)先求導(dǎo),再根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出單調(diào)區(qū)間;
(2)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的取值范圍,求出函數(shù)的單調(diào)區(qū)間,求出函數(shù)的最小值,根據(jù),求出的取值范圍即可.
(1)時(shí),,,令,解得,
∴時(shí),函數(shù)取得極小值,;無(wú)極大值;
(2),
①當(dāng)時(shí),,
所以,當(dāng)時(shí),,當(dāng)時(shí),,
則在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),
所以在區(qū)間上的最小值為,且,符合題意;
②當(dāng)時(shí),令,得或,
所以,當(dāng)時(shí),,在區(qū)間上,為增函數(shù),
所以在區(qū)間上的的最小值為,且,符合題意;
當(dāng)時(shí),,
當(dāng)時(shí),,在區(qū)間上是減函數(shù),
所以,不滿(mǎn)足對(duì)任意的,恒成立,
綜上,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為某市國(guó)慶節(jié)7天假期的商品房日認(rèn)購(gòu)量(單位:套)與日成交量(單位:套)的折線(xiàn)圖,則下面結(jié)論中正確的是( )
A.日成交量的中位數(shù)是16
B.日成交量超過(guò)日平均成交量的有1天
C.日認(rèn)購(gòu)量與日期是正相關(guān)關(guān)系
D.日認(rèn)購(gòu)量的方差大于日成交量的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】追求人類(lèi)與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于,的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為2,過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過(guò)點(diǎn)F且斜率不為零的直線(xiàn)l與橢圓交于A,B兩點(diǎn),以線(xiàn)段AP為直徑的圓與直線(xiàn)的另一個(gè)交點(diǎn)為Q,證明:直線(xiàn)BQ恒過(guò)一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為常數(shù), ,函數(shù), (其中是自然對(duì)數(shù)的底數(shù)).
(1)過(guò)坐標(biāo)原點(diǎn)作曲線(xiàn)的切線(xiàn),設(shè)切點(diǎn)為,求證: ;
(2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)焦點(diǎn)為,直線(xiàn)過(guò)與拋物線(xiàn)交于兩點(diǎn).到準(zhǔn)線(xiàn)的距離之和最小為8.
(1)求拋物線(xiàn)方程;
(2)若拋物線(xiàn)上一點(diǎn)縱坐標(biāo)為,直線(xiàn)分別交準(zhǔn)線(xiàn)于.求證:以為直徑的圓過(guò)焦點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,且曲線(xiàn)與恰有一個(gè)公共點(diǎn).
(Ⅰ)求曲線(xiàn)的極坐標(biāo)方程;
(Ⅱ)已知曲線(xiàn)上兩點(diǎn),滿(mǎn)足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線(xiàn)y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線(xiàn)y=f(x)在M,N兩點(diǎn)處的切線(xiàn)互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以為直徑的上運(yùn)動(dòng),平面,且,點(diǎn)分別是、的中點(diǎn).
(1)求證:;
(2)若,求點(diǎn)平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com