精英家教網 > 高中數學 > 題目詳情

【題目】如圖所示, 矩形所在的平面, 分別是的中點.

(1)求證: 平面

(2)求證: .

(3)當滿足什么條件時,能使平面成立?并證明你的結論.

【答案】(1)見解析;(2)見解析;(3)當滿足時,能使平面成立.證明見解析。

【解析】試題分析:(1)的中點,連結,證明四邊形是平行四邊形,可得,利用線面平行的判定,即可得出結論;(2)由線面垂直得,由矩形性質得由線面垂直的判定定理可得平面,由此能證明;(3)滿足時,能使平面成立,可利用等腰三角形的性質以及線面垂直的判定定理證明.

試題解析:( )證明:取的中點,連接,

分別是, 中點,

,

又∵, 中點,

,

∴四邊形是平行四邊形,

平面 平面,

平面

平面,

,

平面,

又∵

)當滿足時,能使平面成立,

現證明如下:

, 中點,

由(可知,

平面

故當滿足時,能使平面成立.

【方法點晴】本題主要考查線面平行的判定定理、直線和平面垂直的性質定理與判定定理,屬于難題. 證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數, 是自然對數的底數, ).

(Ⅰ)求證: ;

(Ⅱ)已知表示不超過的最大整數,如 ,若對任意,都存在,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了選拔優(yōu)秀學生參加廣州市高二級數學競賽.現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取了5次,記錄如下(單位:分):

甲  83  81  79  95  92 

乙  92  85  75  88  90 

(1)甲乙兩人分數的極差分別是多少?并用莖葉圖表示這兩組數據.

(2)甲乙兩人這5次成績的平均分和方差各是多少?從穩(wěn)定性的角度考慮,你認為選派哪位學生參加比賽較合適?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數據資料,算得 =80, =20, iyi=184, =720.(b=
(1)求家庭的月儲蓄y對月收入x的線性回歸方程;
(2)判斷變量x與y之間是正相關還是負相關;
(3)若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知美國蘋果公司生產某款iPhone手機的年固定成本為40萬美元每生產1萬只還需另投入16萬美元.設蘋果公司一年內共生產該款iPhone手機x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元且R(x)=

(1)寫出年利潤W(萬美元)關于年產量x(萬只)的函數解析式;

(2)當年產量為多少萬只時,蘋果公司在該款iPhone手機的生產中所獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱中,,,分別是的中點,求證:

(1)平面;

(2)

(3)平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數y=f(x)在R上可導且滿足不等式xf′(x)+f(x)>0恒成立,且常數a,b滿足a>b,則下列不等式一定成立的是(  )
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2+bx+c,滿足f(1)=﹣ , 且3a>2c>2b.
(1)求證:a>0時,的取值范圍;
(2)證明函數f(x)在區(qū)間(0,2)內至少有一個零點;
(3)設x1 , x2是函數f(x)的兩個零點,求|x1﹣x2|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用二分法研究函數f(x)=x3+3x﹣1的零點時,第一次經計算f(0)<0,f(0.5)>0,可得其中一個零點x0 ,第二次應計算的f(x)的值為f( ).

查看答案和解析>>

同步練習冊答案