【題目】已知函數(shù)f(x)=.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判定f(x)的奇偶性并證明;
(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).
【答案】(Ⅰ){x|x≠±1}(Ⅱ)f(x)為偶函數(shù)(III)見解析
【解析】試題分析:(Ⅰ)根據(jù)函數(shù)成立的條件進行求解即可.(Ⅱ)根據(jù)函數(shù)奇偶性的定義進行證明.
(Ⅲ)根據(jù)函數(shù)單調(diào)性的定義進行證明.
試題解析:
(Ⅰ)由1﹣x2≠0,得x≠±1,即f(x)的定義域{x|x≠±1};
(Ⅱ)f(x)為偶函數(shù).
∵f(x)定義域關(guān)于原點對稱,且f(﹣x)=f(x)
∴f(x)為偶函數(shù);…
(III)證明:
設(shè)1<x1<x2,則f(x1)﹣f(x2)==2()
,
∵1<x1<x2,
∴x1﹣x2<0,1﹣x2<0,1﹣x1<0,
則f(x1)﹣f(x2)<0,即f(x1)<f(x2),
則函數(shù)f(x)在(1,+∞)上是增函數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一企業(yè)從某條生產(chǎn)線上隨機抽取30件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:
頻數(shù) | 2 | 6 | 18 | 4 |
(I)估計該技術(shù)指標(biāo)值的平均數(shù);(用各組區(qū)間中點值作代表)
(II) 若或,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,試估計該條生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率;
(III)生產(chǎn)一件產(chǎn)品,若是合格品可盈利80元,不合格品則虧損10元,在(II)的前提下,從該生產(chǎn)線生產(chǎn)的產(chǎn)品中任取出兩件,記為兩件產(chǎn)品的總利潤,求隨機變量X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點.
(1)設(shè)圓與軸相切,與圓外切,且圓心在直線上,求圓的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于的直線與圓相交于兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域;
(2)求f(1)+f(﹣3)的值;
(3)求f(a+1)的值(其中a>﹣4且a≠1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)國家擴大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)萬件與年促銷費用()萬元滿足(為常數(shù)).如果不搞促銷活動,則該產(chǎn)品的年銷量只能是1萬件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入12萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均生產(chǎn)投入成本的1.5倍(生產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù),并將該廠家2016年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠家2016年的年促銷費用投入多少萬元時,廠家利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù)
(1)求a的值;
(2)判斷函數(shù)的單調(diào)性,并給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正項數(shù)列{an}的前n項和為Sn , 且2Sn=an2+an(n∈N*),設(shè)cn=(﹣1)n ,則數(shù)列{cn}的前2017項的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對數(shù)列{an}前n項和為Sn , an>0(n=1,2,…),a1=a2=1,且對n≥2有(a1+a2+…+an)an=(a1+a2+…+an﹣1)an+1 , 則S1S2+S2S3+S3S4+…+Sn﹣1Sn= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com