【題目】已知橢圓:的左、右點分別為點在橢圓上,且
(1)求橢圓的方程;
(2)過點(1,0)作斜率為的直線交橢圓于M、N兩點,若求直線的方程;
(3)點P、Q為橢圓上的兩個動點,為坐標原點,若直線的斜率之積為求證:為定值.
【答案】(1);(2)或y=-x+1;(3)5
【解析】
(1)由點在橢圓上,且,列出方程組求出,,由此能求出橢圓的方程.
(2) 設(shè)直線l的方程為,設(shè),,,,聯(lián)立直線和橢圓的方程得到韋達定理,再利用數(shù)量積和韋達定理求出k的值,即得直線方程;
(3)設(shè)直線,聯(lián)立,求出,同理求出,證明為定值.
(1)橢圓的左右焦點分別為,,
點在橢圓上,且,
,解得,,
橢圓的方程為.
(2)設(shè)直線l的方程為,
設(shè),,,,
由,得,
所以,
又,,,
所以,
所以,
所以,均滿足題意.
所以直線的方程為或.
(3)設(shè)直線,
聯(lián)立方程組,得,
,
又直線,
同理,得,
,為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,右表是對 100 輛新車模型在一個耗油單位內(nèi)行車里程(單位:公里)的測試結(jié)果.
(Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車里程在區(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在[40,42)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)欲建兩條圓形觀景步道(寬度忽略不計),如圖所示,已知,(單位:米),要求圓M與分別相切于點B,D,圓與分別相切于點C,D.
(1)若,求圓的半徑;(結(jié)果精確到0.1米)
(2)若觀景步道的造價分別為每米0.8千元與每米0.9千元,則當多大時,總造價最低?最低總造價是多少?(結(jié)果分別精確到0.1°和0.1千元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若數(shù)列滿足,存在實數(shù),對任意,都有,則稱數(shù)列有上界,是數(shù)列的一個上界,已知定理:單調(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數(shù)列滿足,(),求證:1是非負數(shù)列的一個上界,且數(shù)列的極限存在,并求其極限;
(3)若正項遞增數(shù)列無上界,證明:存在,當時,恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前項中最大值為,最小值為,令
(Ⅰ)若,請寫出的值;
(Ⅱ)求證:“數(shù)列是等差數(shù)列”是“數(shù)列是等差數(shù)列”的充要條件;
(Ⅲ)若 ,求證:存在,使得,有
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com