函數(shù)f(x)=logax的反函數(shù)y=f-1(x),則y=f-1(loga2)=
 
考點:反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用反函數(shù)的定義,化簡求解即可.
解答: 解:由原函數(shù)與反函數(shù)的定義域與值域的對應(yīng)關(guān)系,
函數(shù)f(x)=logax的反函數(shù)y=f-1(x),則y=f-1(loga2),可得loga2=logax,
解得x=2.
y=f-1(loga2)=2.
故答案為:2.
點評:本題考查反函數(shù)與原函數(shù)的關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①y=1是冪函數(shù);
②函數(shù)f(x)=2x-x2的零點有2個;
(x+
1
x
+2)5
展開式的項數(shù)是6項;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
π
sinxdx
;
⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2;
其中真命題的序號是
 
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長為4正三角形,AA1⊥平面ABC,AA1=2
6
,M為A1B1的中點.
(Ⅰ)求證:MC⊥AB;
(文科)(Ⅱ)求三棱錐A1-ABP的體積.
(理科)(Ⅱ)若點P為CC1的中點,求二面角B-AP-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F(1,0),短軸的一個端點B到F的距離等于焦距.
(Ⅰ)求橢圓C方程;
(Ⅱ)過點F的直線l與橢圓C交于不同的兩點M,N,是否存在直線l,使得△BFM與△BFN的面積之比為1?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解方程:3
A
3
x
=2
A
2
x+1
+6
A
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)的四位學(xué)生參加了志愿者活動,他們從甲、乙、丙三個比賽項目中,任選一項進(jìn)行志愿者服務(wù),每個項目允許有多人服務(wù),假設(shè)每位學(xué)生選擇哪項是等可能的.
(1)求這四位學(xué)生中至少有一位選擇甲項目的概率;
(2)用隨機(jī)變量ξ表示四位學(xué)生選擇丙項目的人數(shù),求其分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點E在正方體ABCD-A1B1C1D1的棱BC上,F(xiàn)是CD的中點,則二面角C1-EF-C的余弦值的取值范圍是(  )
A、(0,
6
6
B、(
6
6
,1)
C、(0,
7
7
D、(0,
30
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sinx-log 
1
2
x零點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且目標(biāo)函數(shù)z=2x+y的最大值為6,最小值為1(其中b≠0),則
c
b
的值為
 

查看答案和解析>>

同步練習(xí)冊答案