精英家教網 > 高中數學 > 題目詳情

【題目】某電子商務公司對10 000名網絡購物者2017年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9],其頻率分布直方圖如圖所示.

(1)直方圖中的a=_____;

(2)在這些購物者中,消費金額在區(qū)間[0.5,0.9]內的購物者的人數為_______.

【答案】 (1)3; (2)6 000

【解析】(1)0.1×1.5+0.1×2.5+0.1×a+0.1×2+0.1×0.8+0.1×0.2=1,解得a=3;

(2)區(qū)間[0.5,0.9]內的頻率為1-0.1×1.5-0.1×2.5=0.6,則該區(qū)間內購物者的人數為10 000×0.6=6 000.

故答案為(1)3 (2)6 000

點睛: 本題考查頻數的求法,是基礎題,解題時要認真審題,注意頻率分布直方圖的性質的合理運用

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時,方程f(x)﹣k=0只有1個根
(3)設函數g(x)=x2﹣2ax+a,若對于任意x1∈R,總存在x2∈[﹣1,0],使得g(x2)≤f(x1),求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面(A)(B)(C)(D)為四個平面圖形:
(1)數出每個平面圖形的交點數、邊數、區(qū)域數,并將下表補充完整:

交點數

邊數

區(qū)域數

(A)

4

5

2

(B)

5

8

(C)

12

5

(D)

15


(2)觀察表格,若記一個平面圖形的交點數、邊數、區(qū)域數分別為E、F、G,試猜想E、F、G之間的數量關系(不要求證明).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法不正確的是(
A.若“p且q”為假,則p,q至少有一個是假命題
B.命題“x∈R,x2﹣x﹣1<0”的否定是““x∈R,x2﹣x﹣1≥0”
C.當a<0時,冪函數y=xa在(0,+∞)上單調遞減
D.“φ= ”是“y=sin(2x+φ)為偶函數”的充要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立坐標系.已知曲線C:ρsin2θ=2acosθ(a>0),過點P(﹣2,﹣4)的直線l的參數方程為 (t為參數),直線l與曲線C分別交于M、N兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數列,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】世界睡眠日定在每年的321,某網站于2017314日到320日持續(xù)一周網上調查公眾日平均睡眠的時間(單位:小時),共有2 000人參加調查,現(xiàn)將數據整理分組后如下表所示.

序號(i)

分組睡眠時間

組中值(mi)

頻數(人數)

頻率(fi)

1

[4,5)

4.5

80

2

[5,6)

5.5

520

0.26

3

[6,7)

6.5

600

0.30

4

[7,8)

7.5

5

[8,9)

8.5

200

0.10

6

[9,10]

9.5

40

0.02

(1)求出表中空白處的數據,并將表格補充完整.

(2)畫出頻率分布直方圖.

(3)為了對數據進行分析,采用了計算機輔助計算.程序框圖如圖所示,求輸出的S,并說明S的統(tǒng)計意義.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)的定義域為D,若f(x)滿足條件:存在[a,b]D,使f(x)在[a,b]上的值域是[ , ],則成f(x)為“倍縮函數”,若函數f(x)=log2(2x+t)為“倍縮函數”,則t的范圍是(
A.(0,
B.(0,1)
C.(0, ]
D.( ,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的廣告費支出x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對應關系:

x/百萬元

2

4

5

6

8

y/百萬元

30

40

60

50

70

(1)假定y與x之間有線性相關關系,求其回歸直線方程;

(2)若實際的銷售額不少于60百萬元,則廣告費支出應不少于多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某市準備在道路的一側修建一條運動比賽道,賽道的前一部分為曲線段,該曲線段是函數時的圖象,且圖象的最高點為.賽道的中間部分為長千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.

(1)的值和的大小;

(2)若要在圓弧賽道所對應的扇形區(qū)域內建一個“矩形草坪”,矩形的一邊在道路上,一個頂點在半徑上,另外一個頂點在圓弧上,且,求當“矩形草坪”的面積取最大值時的值.

查看答案和解析>>

同步練習冊答案