【題目】如圖,某市準(zhǔn)備在道路的一側(cè)修建一條運(yùn)動(dòng)比賽道,賽道的前一部分為曲線段,該曲線段是函數(shù)時(shí)的圖象,且圖象的最高點(diǎn)為.賽道的中間部分為長(zhǎng)千米的直線跑道,且.賽道的后一部分是以為圓心的一段圓弧.

(1)的值和的大小;

(2)若要在圓弧賽道所對(duì)應(yīng)的扇形區(qū)域內(nèi)建一個(gè)“矩形草坪”,矩形的一邊在道路上,一個(gè)頂點(diǎn)在半徑上,另外一個(gè)頂點(diǎn)在圓弧上,且,求當(dāng)“矩形草坪”的面積取最大值時(shí)的值.

【答案】(1), ;(2).

【解析】試題分析:

(1)由題意可得,故,從而可得曲線段的解析式為,令x=0可得,根據(jù),得,因此(2)結(jié)合題意可得當(dāng)“矩形草坪”的面積最大時(shí),點(diǎn)在弧上,由條件可得“矩形草坪”的面積為,然后根據(jù)的范圍可得當(dāng)時(shí),取得最大值.

試題解析

(1)由條件得.

.

∴曲線段的解析式為.

當(dāng)時(shí),.

,

,

.

(2)由(1),可知.

又易知當(dāng)“矩形草坪”的面積最大時(shí),點(diǎn)在弧上,故.

設(shè),,“矩形草坪”的面積為

.

,

,

故當(dāng),即時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子商務(wù)公司對(duì)10 000名網(wǎng)絡(luò)購(gòu)物者2017年度的消費(fèi)情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖所示.

(1)直方圖中的a=_____;

(2)在這些購(gòu)物者中,消費(fèi)金額在區(qū)間[0.5,0.9]內(nèi)的購(gòu)物者的人數(shù)為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義“三角戀寫法”為“三個(gè)人之間寫信,每人給另外兩人之一寫一封信,且任意兩個(gè)人不會(huì)彼此給對(duì)方寫信”,若五個(gè)人a,b,c,d,e中的每個(gè)人都恰給其余四人中的某一個(gè)人寫了一封信,則不出現(xiàn)“三角戀寫法”寫法的寫信情況的種數(shù)為(
A.704
B.864
C.1004
D.1014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是等邊三角形,側(cè)面AA1B1B為正方形,且AA1⊥平面ABC,D為線段AB上的一點(diǎn).
(Ⅰ)若BC1∥平面A1CD,確定D的位置,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求二面角A1D﹣C﹣BC1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣5|﹣|x﹣2|.
(1)若x∈R,使得f(x)≤m成立,求m的范圍;
(2)求不等式x2﹣8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))是偶函數(shù).

(1)求的值;

(2)若函數(shù)沒有零點(diǎn),求的取值范圍;

(3)若函數(shù), 的最小值為0,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x∈[﹣1,0],θ∈[0,2π),二元函數(shù) 取最小值時(shí),x=x0 , θ=θ0則(
A.4x00=0
B.4x00<0
C.4x00>0
D.以上均有可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中, 分別為的中點(diǎn),點(diǎn)為線段上的一點(diǎn),將沿折起到的位置,使,如圖2.

(1)求證: ;

(2)線段上是否存在點(diǎn),使平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案