精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知拋物線 與圓 )相交于、、四個點.

(Ⅰ)求的取值范圍;

(Ⅱ)當四邊形的面積最大時,求對角線的交點的坐標.

【答案】(12

【解析】()將拋物線代入圓的方程,消去,整理得.............(1

拋物線與圓相交于、、四個點的充要條件是:方程(1)有兩個不相等的正根

{解這個不等式組得.

II) 設四個交點的坐標分別為、。則直線ACBD的方程分別為

解得點P的坐標為。則由(I)根據韋達定理有由于四邊形ABCD為等腰梯形,因而其面積

,則下面求的最大值。

方法1:由三次均值有:

當且僅當,即時取最大值。經檢驗此時滿足題意。故所求的點P的坐標為

2:令,,

,

,或(舍去)

時,;當;當時,

故當且僅當時,有最大值,即四邊形ABCD的面積最大,故所求的點P的坐標為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=|x-1|+|2x-1|.

)若對x>0,不等式f(x)≥tx恒成立,求實數t的最大值M;

(Ⅱ)在()成立的條件下,正實數a,b滿足a2+b2=2M.證明:a+b≥2ab.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量=(2cos, sin),=(cos,2cos),(ω>0),設函數f(x)=,且f(x)的最小正周期為π.

(1)求函數f(x)的表達式;

(2)求f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數f(x)的定義域;
(2)若函數f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“中國人均讀書4.3本(包括網絡文學和教科書),比韓國的11本.法國的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書最少的國家.”這個論斷被各種媒體反復引用.出現這樣的統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國.禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現對小區(qū)內看書人員進行年齡調查,隨機抽取了一天名讀書者進行調查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖.問:

(1)估計在40名讀書者中年齡分布在的人數;

(2)求40名讀書者年齡的平均數和中位數;

(3)若從年齡在的讀書者中任取2名,求恰有1名讀書者年齡在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調銷售單價以提高銷量增加收益.據估算,若今年的實際銷售單價為元/件(),則新增的年銷量(萬件).

(1)寫出今年商戶甲的收益(單位:萬元)與的函數關系式;

(2)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩企業(yè)生產同一種型號零件,按規(guī)定該型號零件的質量指標值落在內為優(yōu)質品.從兩個企業(yè)生產的零件中各隨機抽出了500件,測量這些零件的質量指標值,得結果如下表:

甲企業(yè):

乙企業(yè):

(1)已知甲企業(yè)的500件零件質量指標值的樣本方差,該企業(yè)生產的零件質量指標值服從正態(tài)分布,其中近似為質量指標值的樣本平均數(注:求時,同一組數據用該區(qū)間的中點值作代表),近似為樣本方差,試根據該企業(yè)的抽樣數據,估計所生產的零件中,質量指標值不低于71.92的產品的概率.(精確到0.001)

(2)由以上統(tǒng)計數據完成下面列聯表,并問能否在犯錯誤的概率不超過0.01的前提下,認為“兩個分廠生產的零件的質量有差異”.

附注:

參考數據: ,

參考公式: ,

.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知以點A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于MN兩點,QMN的中點.

(1)求圓A的方程;

(2)當|MN|=2時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電子公司開發(fā)一種智能手機的配件,每個配件的成本是15元,銷售價是20元,月平均銷售件,通過改進工藝,每個配件的成本不變,質量和技術含金量提高,市場分析的結果表明,如果每個配件的銷售價提高的百分率為,那么月平均銷售量減少的百分率為,記改進工藝后電子公司銷售該配件的月平均利潤是(元).

(1)寫出的函數關系式;

(2)改進工藝后,試確定該智能手機配件的售價,使電子公司銷售該配件的月平均利潤最大.

查看答案和解析>>

同步練習冊答案