【題目】函數(shù)滿足如下四個(gè)條件:
①定義域?yàn)?/span>;
②;
③當(dāng)時(shí),;
④對(duì)任意滿足.
根據(jù)上述條件,求解下列問題:
⑴求及的值.
⑵應(yīng)用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性.
⑶求不等式的解集.
【答案】(1)0; (2)見解析; (3)
【解析】
(1) 在中,令可得:;
在中,令,可得.
(2) 為 上的增函數(shù).設(shè),利用,,
可得,結(jié)合時(shí),,利用單調(diào)性的定義可證.
(3)根據(jù),可得,所以原不等式可化為,再利用單調(diào)性可解得.
(1)在中,
令,得,解得.
在中,令.
得,
得,
得,
所以.
(2) 為 上的增函數(shù).
證明如下:設(shè),則 所以.
因?yàn)?/span>==,
即.
根據(jù)增函數(shù)的定義可知, 為 上的增函數(shù).
(3)因?yàn)?/span>,
所以,
又因?yàn)?/span>,所以,
所以,
所以,
由(2)知函數(shù)在上單調(diào)遞增,
所以,解得:.
所以不等式的解集是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,對(duì)任意的,恒有成立.
(1)如果為奇函數(shù),求滿足的條件.
(2)在(1)中條件下,若在上為增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會(huì)》節(jié)目組決定把《將進(jìn)酒》、《山居秋暝》、《望岳》、《送杜少府之任蜀州》和另外確定的兩首詩詞排在后六場,并要求《將進(jìn)酒》與《望岳》相鄰,且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰,且均不排在最后,則后六場開場詩詞的排法有_____________種.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),橢圓C:的左、右焦點(diǎn)分別為F1,F2,右頂點(diǎn)為A,上頂點(diǎn)為B,若|OB|,|OF2|,|AB|成等比數(shù)列,橢圓C上的點(diǎn)到焦點(diǎn)F2的最短距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)T為直線x=-3上任意一點(diǎn),過F1的直線交橢圓C于點(diǎn)P,Q,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于兩條平行直線、(在下方)和圖象有如下操作:將圖象在直線下方的部分沿直線翻折,其余部分保持不變,得到圖象;將圖象在直線上方的部分沿直線翻折,其余部分保持不變,得到圖象:再將圖在直線下方的部分沿直線翻折,其余部分保持不變,得到圖象;再將圖象在直線上方的部分沿直線翻折,其余部分保持不變,得到圖象;以此類推…;直到圖象上所有點(diǎn)均在、之間(含、上)操作停止,此時(shí)稱圖象為圖象關(guān)于直線、的“衍生圖形”,線段關(guān)于直線、的“衍生圖形”為折線段.
(1)直線型
平面直角坐標(biāo)系中,設(shè)直線,直線
①令圖象為的函數(shù)圖象,則圖象的解析式為
②令圖像為的函數(shù)圖象,請你畫出和的圖象
③若函數(shù)的圖象與圖象有且僅有一個(gè)交點(diǎn),且交點(diǎn)在軸的左側(cè),那么的取值范圍是_______.
④請你觀察圖象并描述其單調(diào)性,直接寫出結(jié)果_______.
⑤請你觀察圖象并判斷其奇偶性,直接寫出結(jié)果_______.
⑥圖象所對(duì)應(yīng)函數(shù)的零點(diǎn)為_______.
⑦任取圖象中橫坐標(biāo)的點(diǎn),那么在這個(gè)變化范圍中所能取到的最高點(diǎn)的坐標(biāo)為(_______,_______),最低點(diǎn)坐標(biāo)為(_______,_______).
⑧若直線與圖象有2個(gè)不同的交點(diǎn),則的取值范圍是_______.
⑨根據(jù)函數(shù)圖象,請你寫出圖象的解析式_______.
(2)曲線型
若圖象為函數(shù)的圖象,
平面直角坐標(biāo)系中,設(shè)直線,直線,
則我們可以很容易得到所對(duì)應(yīng)的解析式為.
①請畫出的圖象,記所對(duì)應(yīng)的函數(shù)解析式為.
②函數(shù)的單調(diào)增區(qū)間為_______,單調(diào)減區(qū)間為_______.
③當(dāng)時(shí)候,函數(shù)的最大值為_______,最小值為_______.
④若方程有四個(gè)不同的實(shí)數(shù)根,則的取值范圍為_______.
(3)封閉圖形型
平面直角坐標(biāo)系中,設(shè)直線,直線
設(shè)圖象為四邊形,其頂點(diǎn)坐標(biāo)分別為,,,,四邊形關(guān)于直線、的“衍生圖形”為.
①的周長為_______.
②若直線平分的周長,則_______.
③將沿右上方方向平移個(gè)單位,則平移過程中所掃過的面積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn).用,分別表示烏龜和兔子所行的路程,為時(shí)間,則與故事情節(jié)相吻合的是( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.
(3)若對(duì)任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com