【題目】某同學在上學路上要經過三個帶有紅綠燈的路口.已知他在、、三個路口遇到紅燈的概率依次是、,遇到紅燈時停留的時間依次是秒、秒、秒,且在各路口是否遇到紅燈是相互獨立的.

(1)求這名同學在上學路上在第三個路口首次遇到紅燈的概率;,

(2)求這名同學在上學路上因遇到紅燈停留的總時間.

【答案】(1)(2)

【解析】試題分析:(1)先確定事件:“這名同學在第一和第二個路口沒有遇到紅燈,在第三個路口遇到紅燈”,再根據(jù)概率乘法求概率(2)即求數(shù)學期望:先確定隨機變量取法,再分別求對應概率,最后根據(jù)數(shù)學期望公式求期望

試題解析:(1)設這名同學在上學路上到第三個路口時首次遇到紅燈為事件,

因為事件等于事件“這名同學在第一和第二個路口沒有遇到紅燈,在第三個路口遇到紅燈” ,

所以事件的概率為.

(2)記“這名同學在上學路上因遇到紅燈停留的總時間”為,

由題意,可得可能取的值為0,40,20,80,60,100,120,140(單位:秒).

∴即的分布列是:

;

;

; ;

;

所以.

答:這名同學在上學路上因遇到紅燈停留的總時間為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,DP⊥x軸,點M在DP的延長線上,且|DM|=2|DP|.當點P在圓x2+y2=1上運動時.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過點T(0,t)作圓x2+y2=1的切線交曲線C于A,B兩點,求△AOB面積S的最大值和相應的點T的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖所示的幾何體中, 為三棱柱,且,四邊形為平行四邊形, , .

(1)求證:

(2)若,求證: ;

(3)若,二面角的余弦值為若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lg(x2+tx+2)(t為常數(shù),且﹣2 <t<2 ).
(1)當x∈[0,2]時,求函數(shù)f(x)的最小值(用t表示);
(2)是否存在不同的實數(shù)a,b,使得f(a)=lga,f(b)=lgb,并且a,b∈(0,2).若存在,求出實數(shù)t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù).

1時, ,若當時, 恒成立,求的最小值;

2)若的圖像關于對稱,且時, ,求當時, 的解析式;

3時, .若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,.數(shù)列滿足,,且

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍;

(3)是否存在正整數(shù),,使,)成等差數(shù)列,若存在,求出所有滿足條件的,,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知任意角θ以x軸非負半軸為始邊,若終邊經過點P(x0 , y0),且|OP|=r(r>0),定義sicosθ= ,稱“sicosθ”為“正余弦函數(shù)”.對于正余弦函數(shù)y=sicosx,有同學得到如下結論: ①該函數(shù)是偶函數(shù);
②該函數(shù)的一個對稱中心是( ,0);
③該函數(shù)的單調遞減區(qū)間是[2kπ﹣ ,2kπ+ ],k∈Z.
④該函數(shù)的圖象與直線y= 沒有公共點;
以上結論中,所有正確的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=aln(x2+1)+bx,g(x)=bx2+2ax+b,(a>0,b>0).已知方程g(x)=0有兩個不同的非零實根x1 , x2
(1)求證:x1+x2<﹣2;
(2)若實數(shù)λ滿足等式f(x1)+f(x2)+3a﹣λb=0,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù)中,表示相等函數(shù)的一組是(
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)

查看答案和解析>>

同步練習冊答案