是不同的直線,是不同的平面,有以下四個命題:
 ②  ③  ④
其中正確的個數(shù)(     )
A.1個B.2個C.3個D.4個
B

試題分析:平行于同一個平面的兩個平面一定平行,所以①正確;②中的可能平行于也可能與平面相交,并不一定垂直于平面,所以不正確;③正確;④中可能也在內,所以得不出平行于平面,所以不正確.
點評:判斷直線、平面之間的位置關系時,要扣緊定理,對定理中特別強調的點一定要仔細判斷,多想一些反面的例子.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設為棱上的點,滿足異面直線所成的角為,求的長.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)在四棱錐中,底面ABCD是邊長為1的正方形,平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN //平面PAD          (2)求點B到平面AMN的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)
在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E的棱AB上移動。
(I)證明:D1EA1D;
(II)AE等于何值時,二面角D1-EC-D的大小為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(Ⅰ) 證明:BC1//平面ACD1
(Ⅱ)證明:A1D⊥D1E;
(Ⅲ) 當E為AB的中點時,求點E到面 ACD1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側棱底面,,的中點,作于點

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有三個平面,β,γ,給出下列命題:
①若,β,γ兩兩相交,則有三條交線     ②若⊥β,⊥γ,則β∥γ
③若⊥γ,β∩=a,β∩γ=b,則a⊥b   ④若∥β,β∩γ=,則∩γ=
其中真命題是        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線不平行于平面,則下列結論成立的是(   )
A.平面內的所有直線都與直線異面B.平面內不存在與直線平行的直線
C.平面內的直線都與直線相交D.平面內必存在直線與直線垂直

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知棱長為1的正方體ABCD-A1B1C1D1中,P在對角線A1C1上,記二面角P-AB-C為α,二面角P-BC-A為β。

(1)當A1P:PC1=1:3時,求cos(α+β)的大小。
(2)點P是線段A1C1(包括端點)上的一個動點,問:當點P在什么位置時,α+β有最小值?

查看答案和解析>>

同步練習冊答案