在空間五面體ABCDE中,四邊形ABCD是正方形,AB⊥平面BCE,∠CBE=90°.
點(diǎn)F是BE的中點(diǎn).求證:
(I)ED∥平面ACF
(II)AC⊥平面BDF.

【答案】分析:(I)點(diǎn)F是AB的中點(diǎn),利用FO為△BED的中位線(xiàn),推出OF∥DE,然后證明ED∥平面ACF
(II)要證AC⊥平面BDF,只需證明BF⊥AC,AC⊥BD,BD∩BF=B即可.
解答:證明:(I)∵點(diǎn)F是AB的中點(diǎn),AC∩BD=O,
∴FO為△BED的中位線(xiàn)
∴OF∥DE
又∵ED?平面ACF,OF?平面ACF
∴DE∥平面ACF(6分)
(II)∵AB⊥平面BCE,BF?平面BCE
∴AB⊥BF,
∵∠CBE=90°,
∴BF⊥BC,
∴AC⊥BD,
∵AB∩BC=B,∴BF⊥平面ABCD,
AC?平面ABCD,BF⊥AC,
又四邊形ABCD是正方形,
∴AC⊥BD,BD∩BF=B,
∴AC⊥平面BDF(13分)
點(diǎn)評(píng):本題是中檔題,考查直線(xiàn)與平面的平行,直線(xiàn)與平面的垂直,考查空間想象能力,基本知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)在空間五面體ABCDE中,四邊形ABCD是正方形,AB⊥平面BCE,∠CBE=90°.
點(diǎn)F是BE的中點(diǎn).求證:
(I)ED∥平面ACF
(II)AC⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市昌平區(qū)高三考模擬考試數(shù)學(xué)試卷(文科) 題型:解答題

在空間五面體ABCDE中,四邊形ABCD是正方形,,. 點(diǎn)的中點(diǎn). 求證:

(I)
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市昌平區(qū)高三考模擬考試數(shù)學(xué)試卷(文科) 題型:解答題

在空間五面體ABCDE中,四邊形ABCD是正方形,,. 點(diǎn)的中點(diǎn). 求證:

(I)

(II)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分13分)

在空間五面體ABCDE中,四邊形ABCD是正方形,

,.

點(diǎn)的中點(diǎn). 求證:

(I)

(II)

查看答案和解析>>

同步練習(xí)冊(cè)答案