【題目】已知函數(shù)在點處的切線與直線垂直.(注: 為自然對數(shù)的底數(shù))
(1)求的值;
(2)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(3)求證:當時, 恒成立.
【答案】(1);(2);(3)詳見解析.
【解析】試題分析:(1)求出函數(shù)的導數(shù),求出切線的斜率,結合兩直線垂直的條件,可得的方程,解出即可;(2)求出單調區(qū)間可得極值點1,令,可得取值范圍;(3)當時, ,令,運用二次求導可得函數(shù),得結論.
試題解析:(1)因為,所以,
又據題意,得,所以,所以.
(2),
當時, , 為增函數(shù),
當時, , 為減函數(shù).
所以函數(shù)僅當時,取得極值.
又函數(shù)在區(qū)間上存在極值,所以,所以.
故實數(shù)的取值范圍是.
(3)當時, ,令,則
,
再令,則,
又因為,所以.
所以在上是增函數(shù),
又因為,
所以當時, .
所以在區(qū)間上是增函數(shù).
所以當時, ,又,∴恒成立,即原不等式成立.
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=(n∈N+),
(1)計算a2、a3、a4并由此猜想通項公式an;
(2)證明(1)中的猜想.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)在處取得極值,且在點處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調遞增區(qū)間及極值。
(3)求函數(shù)在的最值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解青少年的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名青少年進行調查,得到如下列聯(lián)表:
常喝 | 不常喝 | 總計 | |
肥胖 | 2 | ||
不肥胖 | 18 | ||
總計 | 30 |
已知從這30名青少年中隨機抽取1名,抽到肥胖青少年的概率為.
(1)請將列聯(lián)表補充完整;(2)是否有99.5%的把握認為青少年的肥胖與常喝碳酸飲料有關?
獨立性檢驗臨界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學數(shù)學老師分別用兩種不同教學方式對入學數(shù)學平均分和優(yōu)秀率都相同的甲、乙兩個高一新班(人數(shù)均為20人)進行教學(兩班的學生學習數(shù)學勤奮程度和自覺性一致),數(shù)學期終考試成績莖葉圖如下:
(1)學校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>聯(lián)表,并判斷有多大把握認為“成績優(yōu)秀與教學方式有關”.
附:參考公式及數(shù)據
(2)從兩個班數(shù)學成績不低于90分的同學中隨機抽取3名,設為抽取成績不低于95分同學人數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校隨機調查了80位學生,以研究學生中愛好羽毛球運動與性別的關系,得到下面的列聯(lián)表:
愛好 | 不愛好 | 合計 | |
男 | 20 | 30 | 50 |
女 | 10 | 20 | 30 |
合計 | 30 | 50 | 80 |
(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調查了本校的3名學生,設這3人中愛好羽毛球運動的人數(shù)為,求 的分布列,數(shù)學期望及方差;
(Ⅱ)根據表中數(shù)據,能否有充分證據判斷愛好羽毛球運動與性別有關?若有,有多大把握?
0.500 | 0.100 | 0.050 | 0.010 | |
| 0.455 | 2.706 | 3.841 | 6.635 |
附:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com